skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-Energy X-Ray Imager for Laser-Fusion Research at the National Ignition Facility

Technical Report ·
DOI:https://doi.org/10.2172/15016017· OSTI ID:15016017

X-ray imaging will be an important diagnostic tool for inertial confinement fusion (ICF) research at the National Ignition Facility (NIF). However, high neutron yields will make x-ray imaging much more difficult than it is at smaller facilities. We analyze the feasibility and performance of a High-Energy X-Ray Imager (HEXRI) to be used on cryogenic DT implosions at NIF, with particular emphasis on spatial-resolution, field of view, signal-to-background and signal-to-noise ratios. Using a pinhole about 4 {micro}m in diameter a resolution of 5.8 {micro}m is achieved at 9 keV, limited by restrictions in the pinhole positioning. The resolution varies between 8.5 and 4.5 {micro}m in the 5-20 keV spectral range. Different options for the scintillating materials have been evaluated with the goal of having a sufficiently fast phosphor screen to allow time gating for minimizing neutron-induced background. Signal/Background (SBR) and Signal/Noise (SNR) ratios (limited to x-rays) have been calculated for different commercially-available scintillators, both showing adequate values with either a tantalum or a platinum pinhole substrate.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
15016017
Report Number(s):
UCRL-TR-211667; TRN: US200509%%730
Resource Relation:
Other Information: PBD: 18 Apr 2005
Country of Publication:
United States
Language:
English