skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reconstructing Ocean Circulation using Coral (triangle)14C Time Series

Abstract

We utilize monthly {sup 14}C data derived from coral archives in conjunction with ocean circulation models to address two questions: (1) how does the shallow circulation of the tropical Pacific vary on seasonal to decadal time scales and (2) which dynamic processes determine the mean vertical structure of the equatorial Pacific thermocline. Our results directly impact the understanding of global climate events such as the El Nino-Southern Oscillation (ENSO). To study changes in ocean circulation and water mass distribution involved in the genesis and evolution of ENSO and decadal climate variability, it is necessary to have records of climate variables several decades in length. Continuous instrumental records are limited because technology for continuous monitoring of ocean currents (e.g. satellites and moored arrays) has only recently been available, and ships of opportunity archives such as COADS contain large spatial and temporal biases. In addition, temperature and salinity in surface waters are not conservative and thus can not be independently relied upon to trace water masses, reducing the utility of historical observations. Radiocarbon in sea water is a quasi-conservative water mass tracer and is incorporated into coral skeletal material, thus coral {sup 14}C records can be used to reconstruct changes in shallowmore » circulation that would be difficult to characterize using instrumental data. High resolution {Delta}{sup 14}C timeseries such as ours, provide a powerful constraint on the rate of surface ocean mixing and hold great promise to augment one time oceanographic surveys. {Delta}{sup 14}C timeseries such as these, not only provide fundamental information about the shallow circulation of the Pacific, but can also be directly used as a benchmark for the next generation of high resolution ocean models used in prognosticating climate. The measurement of {Delta}{sup 14}C in biological archives such as tree rings and coral growth bands is a direct record of the invasion of fossil fuel CO{sub 2} and bomb {sup 14}C into the atmosphere and surface oceans. Therefore the {Delta}{sup 14}C data that are produced in this study can be used to validate the ocean uptake of fossil fuel CO2 in coupled ocean-atmosphere models. This study takes advantage of the quasi-conservative nature of {sup 14}C as a water mass tracer by using {Delta}{sup 14}C time series in corals to identify changes in the shallow circulation of the Pacific. Although the data itself provides fundamental information on surface water mass movement the true strength is a combined approach which is greater than the individual parts; the data helps uncover deficiencies in ocean circulation models and the model results place long {Delta}{sup 14}C time series in a dynamic framework which helps to identify those locations where additional observations are most needed.« less

Authors:
;
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
15013585
Report Number(s):
UCRL-ID-142822
TRN: US200604%%102
DOE Contract Number:  
W-7405-ENG-48
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
29 ENERGY PLANNING, POLICY AND ECONOMY; 58 GEOSCIENCES; BENCHMARKS; CLIMATES; CORALS; FOSSIL FUELS; MASS DISTRIBUTION; MONITORING; ORIGIN; OSCILLATIONS; RESOLUTION; SALINITY; SEAS; SURFACE WATERS; TREE RINGS; WATER CURRENTS

Citation Formats

Kashgarian, M, and Guilderson, T P. Reconstructing Ocean Circulation using Coral (triangle)14C Time Series. United States: N. p., 2001. Web. doi:10.2172/15013585.
Kashgarian, M, & Guilderson, T P. Reconstructing Ocean Circulation using Coral (triangle)14C Time Series. United States. https://doi.org/10.2172/15013585
Kashgarian, M, and Guilderson, T P. 2001. "Reconstructing Ocean Circulation using Coral (triangle)14C Time Series". United States. https://doi.org/10.2172/15013585. https://www.osti.gov/servlets/purl/15013585.
@article{osti_15013585,
title = {Reconstructing Ocean Circulation using Coral (triangle)14C Time Series},
author = {Kashgarian, M and Guilderson, T P},
abstractNote = {We utilize monthly {sup 14}C data derived from coral archives in conjunction with ocean circulation models to address two questions: (1) how does the shallow circulation of the tropical Pacific vary on seasonal to decadal time scales and (2) which dynamic processes determine the mean vertical structure of the equatorial Pacific thermocline. Our results directly impact the understanding of global climate events such as the El Nino-Southern Oscillation (ENSO). To study changes in ocean circulation and water mass distribution involved in the genesis and evolution of ENSO and decadal climate variability, it is necessary to have records of climate variables several decades in length. Continuous instrumental records are limited because technology for continuous monitoring of ocean currents (e.g. satellites and moored arrays) has only recently been available, and ships of opportunity archives such as COADS contain large spatial and temporal biases. In addition, temperature and salinity in surface waters are not conservative and thus can not be independently relied upon to trace water masses, reducing the utility of historical observations. Radiocarbon in sea water is a quasi-conservative water mass tracer and is incorporated into coral skeletal material, thus coral {sup 14}C records can be used to reconstruct changes in shallow circulation that would be difficult to characterize using instrumental data. High resolution {Delta}{sup 14}C timeseries such as ours, provide a powerful constraint on the rate of surface ocean mixing and hold great promise to augment one time oceanographic surveys. {Delta}{sup 14}C timeseries such as these, not only provide fundamental information about the shallow circulation of the Pacific, but can also be directly used as a benchmark for the next generation of high resolution ocean models used in prognosticating climate. The measurement of {Delta}{sup 14}C in biological archives such as tree rings and coral growth bands is a direct record of the invasion of fossil fuel CO{sub 2} and bomb {sup 14}C into the atmosphere and surface oceans. Therefore the {Delta}{sup 14}C data that are produced in this study can be used to validate the ocean uptake of fossil fuel CO2 in coupled ocean-atmosphere models. This study takes advantage of the quasi-conservative nature of {sup 14}C as a water mass tracer by using {Delta}{sup 14}C time series in corals to identify changes in the shallow circulation of the Pacific. Although the data itself provides fundamental information on surface water mass movement the true strength is a combined approach which is greater than the individual parts; the data helps uncover deficiencies in ocean circulation models and the model results place long {Delta}{sup 14}C time series in a dynamic framework which helps to identify those locations where additional observations are most needed.},
doi = {10.2172/15013585},
url = {https://www.osti.gov/biblio/15013585}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Feb 23 00:00:00 EST 2001},
month = {Fri Feb 23 00:00:00 EST 2001}
}