skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development of Alkaline Oxidative Dissolution Methods for Chromium (III) Compounds Present in Hanford Site Tank Sludges

Miscellaneous ·
OSTI ID:15010156

The high-level radioactive waste sludge in the underground storage tanks at the Hanford Site contains various chromium solid phases. Dissolution and removal of chromium from tank waste sludges is desirable prior to high-level waste vitrification because increased volume is required to incorporate the residual chromium. Unfortunately, dissolution of chromium from the sludge to form Cr(OH){sub 4}{sup -} through treatment with heated NaOH solution (also used to dissolve aluminum phases and metathesize phosphates to sodium salts) generally has been unsuccessful in tests with both simulated and genuine Hanford waste sludges. Oxidative dissolution of the Cr(III) compounds to form soluble chromate has been proposed as an alternative chromium solid phase dissolution method and results of limited prior testing have been reported. The present systematic tests investigated oxygen gas, hydrogen peroxide, and sodium persulfate oxidants to dissolve Cr(III) under alkaline conditions to form soluble chromate. Permanganate and ozone also were considered for testing but were thought to be of secondary interest because of the insoluble residue (MnO{sub 2} from permanganate) and complex equipment (necessary to generate ozone) implicit with use of these reagents. The oxygen and hydrogen peroxide reagents leave no condensable residue and sodium persulfate only leaves soluble sodium sulfate. Crystalline Cr(OH){sub 3}, various hydrothermally aged amorphous Cr(III) oxide hydrates, mixed Fe(III)/Cr(III) oxide hydrates, and nickel and iron Cr(III) spinels, all of which have been identified or are likely constituents in Hanford tank wastes, were prepared and characterized for the dissolution tests. The effects of reagent and hydroxide concentrations, reaction temperature, and transition metal catalysts on reaction progress were investigated for each reagent as functions of reaction time. Reaction progress was measured by monitoring chromate concentration. Oxidation of chromium compounds by dissolved oxygen was found to increase linearly with oxygen partial pressure and NaOH concentration. The rate also increased with temperature at low activation energy, 26-36 kJ/mol, reflecting the opposing influences of decreasing oxygen volubility and increasing underlying chemical reaction rate. The reaction apparently proceeds by way of dissolved Cr(III) species, is catalyzed by Ni(II), and is slower for the hydrothermally aged materials. Dissolution rates ranged from about 7 x 10{sup -5} to 2.4 x 10{sup -4} moles Cr(III)/liter-hour in 80 C, 3-M NaOH with one atmosphere pure oxygen for the various Cr(III) compounds tested. These low dissolution rates commend the use of oxygen reagent to waste tank processing where extended residence times maybe practical. Oxidative dissolution of Cr(III) compounds by hydrogen peroxide was hampered in the presence of greater than 0.5 g Fe(III)/liter and other catalysts for H{sub 2}O{sub 2} decomposition and was less effective for materials that had undergone prolonged aging at high temperatures. Leaching was optimized at low excess NaOH and high temperatures (activation energy of {approx}82 kJ/mol). To prevent excessive loss of H{sub 2}O{sub 2} to catalytic decomposition, the peroxide reagent must be added slowly and with intense stirring. Treatment of waste solids with H{sub 2}O{sub 2} may only be attractive for freshly formed Cr(III) hydroxides [formed, for example, by alkaline metathesis of Cr(III)-bearing sludges] in the absence of decomposition catalysts such as Fe(III).

Research Organization:
Pacific Northwest National Lab., Richland, WA (US)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
AC05-76RL01830
OSTI ID:
15010156
Report Number(s):
PNNL-12209; EY4049110; TRN: US0500332
Resource Relation:
Other Information: PBD: 2 Jul 1999
Country of Publication:
United States
Language:
English