skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Torsional Buckling and Writhing Dynamics of Elastic Cables and DNA

Conference ·

Marine cables under low tension and torsion on the sea floor can undergo a dynamic buckling process during which torsional strain energy is converted to bending strain energy. The resulting three-dimensional cable geometries can be highly contorted and include loops and tangles. Similar geometries are known to exist for supercoiled DNA and these also arise from the conversion of torsional strain energy to bending strain energy or, kinematically, a conversion of twist to writhe. A dynamic form of Kirchhoff rod theory is presented herein that captures these nonlinear dynamic processes. The resulting theory is discretized using the generalized-method for finite differencing in both space and time. The important kinematics of cross-section rotation are described using an incremental rotation ''vector'' as opposed to traditional Euler angles or Euler parameters. Numerical solutions are presented for an example system of a cable subjected to increasing twist at one end. The solutions show the dynamic evolution of the cable from an initially straight element, through a buckled element in the approximate form of a helix, and through the dynamic collapse of this helix through a looped form.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
15007472
Report Number(s):
UCRL-JC-151764; TRN: US200417%%199
Resource Relation:
Journal Volume: 2003; Conference: American Society of Mechanical Engineers 19th Biennial Conference on Mechanical Vibration and Noise, Chicago, IL (US), 09/02/2003--09/06/2003; Other Information: PBD: 14 Feb 2003
Country of Publication:
United States
Language:
English

Similar Records

Transcription-Driven Twin Supercoiling of a DNA Loop: A Brownian Dynamics Study
Journal Article · Wed Jun 30 00:00:00 EDT 2004 · Journal of Chemical Physics · OSTI ID:15007472

In the Absence of Writhe, DNA Relieves Torsional Stress with Localized, Sequence-Dependent Structural Failure to Preserve B-form
Journal Article · Tue Sep 01 00:00:00 EDT 2009 · Nucleic Acids Research, 37(16):5568-5577 · OSTI ID:15007472

Theoretical study of the conformation and energy of supercoiled DNA
Thesis/Dissertation · Wed Jan 01 00:00:00 EST 1992 · OSTI ID:15007472