skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Inertial Conference Fusion Semiannual Report October 1999 - March 2000, Volume 1, Number 1

Thesis/Dissertation ·
DOI:https://doi.org/10.2172/15007240· OSTI ID:15007240
 [1];  [1];  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

This first issue of the ''ICF Semiannual Report'' contains articles whose diverse subjects attest to the broad technical and scientific challenges that are at the forefront of the ICF program at LLNL. The first article describes the progress being made at solving the surface roughness problem on capsule mandrels. All NIF capsule options, except machined beryllium, require a mandrel upon which the ablator is deposited. This mandrel sets the baseline sphericity of the final capsule. Problems involving defects in the mandrel have been overcome using various techniques so that 2-mm-size mandrels can now be made that meet the NIF design specification. The second article validates and provides a detailed numerical investigation of the shadowgraph technique currently used to diagnose the surface roughness of a fuel ice layer inside of a transparent capsule. It is crucial for the success of the indirect-drive ignition targets that the techniques used to characterize ice-surface roughness be well understood. This study identifies methods for analyzing the bright band that give an accurate measure of the ice-surface roughness. The third article describes a series of realistic laser and target modifications that can lead to 3-4 times more energy coupling and 10 times greater yield from a NIF indirect-drive ignition target. Target modifications include using various mixtures of rare-earth and other high-Z metals as hohlraum wall material and adjusting the laser-entrance-hole size and the case-to-capsule size ratio. Each option is numerically examined separately and together. The fourth article reviews how detailed x-ray and Thomson scattering measurements from a high-density and high-temperature gasbag plasma are used to test spectroscopic modeling techniques. There is good agreement between the model and experimental dielectronic capture satellite intensities. However, improvements are required in the modeling of inner shell collisionally populated satellite states. These improvements can have important implications for the interpretation of inertial confinement fusion capsule implosions. The fifth article reports on experiments using the OMEGA laser that investigate symmetry control in hohlraums. The experiments explore a control method where different pointings are used for different groups of beams and the beams are staggered in time. This gives a dynamic beam pointing adjustment during the laser pulse. Measurements of the capsule symmetry show agreement with simulations and show the ability to control low-mode drive asymmetries. The sixth article reports on the observation of an intense high-energy proton beam produced by irradiating a thin-foil target with the petawatt laser. This experiment is important for understanding new mechanisms of ion acceleration using high-intensity short-pulse lasers. Proton beams of the type observed here could be of interest for applications ranging from medicine to fast ignition.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
15007240
Report Number(s):
UCRL-LR-105821-00-1; TRN: US0401486
Resource Relation:
Other Information: No thesis information provided; PBD: 1 Mar 2000
Country of Publication:
United States
Language:
English

Similar Records

Inertial Confinement Fusion Materials Science
Journal Article · Tue Jun 01 00:00:00 EDT 2004 · Encyclopedia of Materials: Science and Technology, n/a, n/a, January 1, 2006, pp. 1-11 · OSTI ID:15007240

Fundamentals of ICF Hohlraums
Conference · Fri Sep 30 00:00:00 EDT 2005 · OSTI ID:15007240

Progress Toward Ignition on the National Ignition Facility
Technical Report · Mon Oct 17 00:00:00 EDT 2011 · OSTI ID:15007240