skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Seismic Analysis of Morrow Point Dam

Abstract

The main objective of this study is to perform nonlinear dynamic earthquake time history analyses on Morrow Point Dam, which is located 263 km southwest of Denver, Colorado. This project poses many significant technical challenges, one of which is to model the entire Morrow Point Dam/Foundation Rock/Reservoir system which includes accurate geology topography. In addition, the computational model must be initialized to represent the existing dead loads on the structure and the stress field caused by the dead loads. To achieve the correct dead load stress field due to gravity and hydrostatic load, the computer model must account for the manner in which the dams were constructed. Construction of a dam finite element model with the correct as-built geometry of the dam structure and simply ''turning on'' gravity in the computer model will generally lead to an incorrect initial stress field in the structure. The sequence of segmented lifts typical of dam construction has a significant impact on the static stress fields induced in the dam. In addition, the dam model must also account for the interaction between the adjacent dam segments across the dam contraction joints. As a result of these challenges, it was determined that a significant amountmore » of code development was required in order to accurately simulate the motion of the dam structure. Modifications to the existing slide surfaces are needed to allow for appropriate modeling of the shear keys across the contraction joints. Furthermore, a model for hydrodynamic interaction was also implemented into NIKE3D and DYNA3D for fluid representation in the 3D dam system finite element model. Finally, the modeling of the 3D dam system results in a very large computational model, which makes it difficult to perform a static initialization using an implicit code. Traditionally, for these large models, the model has been initialized over a long time scale using an explicit code. However, recent advancements have made it possible to run NIKE3D in ''parallel'' on relatively small parallel machines as well as on the ASCI platforms.« less

Authors:
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
US Department of Energy (US)
OSTI Identifier:
15006848
Report Number(s):
UCRL-JC-147993
TRN: US200412%%249
DOE Contract Number:  
W-7405-ENG-48
Resource Type:
Conference
Resource Relation:
Conference: Workshop on Non-Linear Structural Analysis of Concrete Dams and Concrete Appurtenances to Dams, Denver, CO (US), 04/22/2002--04/23/2002; Other Information: PBD: 1 Apr 2002
Country of Publication:
United States
Language:
English
Subject:
13 HYDRO ENERGY; 42 ENGINEERING; COLORADO; COMPUTERS; CONCRETES; CONSTRUCTION; CONTRACTION; DAMS; EARTHQUAKES; GEOLOGY; GEOMETRY; HYDRODYNAMICS; HYDROSTATICS; MODIFICATIONS; SHEAR; SIMULATION; TOPOGRAPHY

Citation Formats

Noble, C R. Seismic Analysis of Morrow Point Dam. United States: N. p., 2002. Web.
Noble, C R. Seismic Analysis of Morrow Point Dam. United States.
Noble, C R. 2002. "Seismic Analysis of Morrow Point Dam". United States. https://www.osti.gov/servlets/purl/15006848.
@article{osti_15006848,
title = {Seismic Analysis of Morrow Point Dam},
author = {Noble, C R},
abstractNote = {The main objective of this study is to perform nonlinear dynamic earthquake time history analyses on Morrow Point Dam, which is located 263 km southwest of Denver, Colorado. This project poses many significant technical challenges, one of which is to model the entire Morrow Point Dam/Foundation Rock/Reservoir system which includes accurate geology topography. In addition, the computational model must be initialized to represent the existing dead loads on the structure and the stress field caused by the dead loads. To achieve the correct dead load stress field due to gravity and hydrostatic load, the computer model must account for the manner in which the dams were constructed. Construction of a dam finite element model with the correct as-built geometry of the dam structure and simply ''turning on'' gravity in the computer model will generally lead to an incorrect initial stress field in the structure. The sequence of segmented lifts typical of dam construction has a significant impact on the static stress fields induced in the dam. In addition, the dam model must also account for the interaction between the adjacent dam segments across the dam contraction joints. As a result of these challenges, it was determined that a significant amount of code development was required in order to accurately simulate the motion of the dam structure. Modifications to the existing slide surfaces are needed to allow for appropriate modeling of the shear keys across the contraction joints. Furthermore, a model for hydrodynamic interaction was also implemented into NIKE3D and DYNA3D for fluid representation in the 3D dam system finite element model. Finally, the modeling of the 3D dam system results in a very large computational model, which makes it difficult to perform a static initialization using an implicit code. Traditionally, for these large models, the model has been initialized over a long time scale using an explicit code. However, recent advancements have made it possible to run NIKE3D in ''parallel'' on relatively small parallel machines as well as on the ASCI platforms.},
doi = {},
url = {https://www.osti.gov/biblio/15006848}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Apr 01 00:00:00 EST 2002},
month = {Mon Apr 01 00:00:00 EST 2002}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: