skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Flibe Coolant Cleanup and Processing in the HYLIFE-II Inertial Fusion Energy Power Plant

Technical Report ·
DOI:https://doi.org/10.2172/15006180· OSTI ID:15006180

In the HYLIFE-II chamber design, a thick flowing blanket of molten-salt (Li{sub 2}BeF{sub 4}) called flibe is used to protect structures from radiation damage. Since it is directly exposed to the fusion target, the flibe will absorb the target debris. Removing the materials left over from target explosions at the rate of {approx}6/s and then recycling some of these materials poses a challenge for the inertial fusion energy power plant. The choice of target materials derives from multi-disciplinary criteria such as target performance, fabricability, safety and environment, corrosion, and cost of recycle. Indirect-drive targets require high-2 materials for the hohlraum. Gold and gadolinium are favorite target materials for laboratory experiments but cost considerations may preclude their use in power plants or at least requires cost effective recycle because a year's supply of gold and gadolinium is estimated at 520 M$ and 40 M$. Environmental and waste considerations alone require recycle of this material. Separation by volatility appears to be the most attractive (e.g., Hg and Xe); centrifugation (e.g., Pb) is acceptable with some problems (e.g., materials compatibility) and chemical separation is the least attractive (e.g. Gd and Hf). Mercury, hafnium and xenon might be substituted with equal target performance and have advantages in removal and recycle due to their high volatility, except for hafnium. Alternatively, lead, tungsten and xenon might be used due to the ability to use centrifugation and gaseous separation. Hafnium or tantalum form fluorides, which will complicate materials compatibility, corrosion and require sufficient volatility of the fluoride for separation. Further complicating the coolant cleanup and processing is the formation of free fluorine due to nuclear transformation of lithium and beryllium in the flibe, which requires chemical control of the fluoride level to minimize corrosion. The study of the choice of target materials and the appropriate processing needs further study because we have not come up with choices which perform as well as gold and gadolinium and which have practical processes for recovery and recycle.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
15006180
Report Number(s):
UCRL-ID-143228; TRN: US0400446
Resource Relation:
Other Information: PBD: 23 Mar 2001
Country of Publication:
United States
Language:
English