skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: All Fiber Technology for High-Energy Petawatt Front End Laser Systems

Conference ·
OSTI ID:15005171

We are developing an all fiber front end for the next generation high-energy petawatt (HEPW) laser at Lawrence Livermore National Laboratory (LLNL). The ultimate goal of the LLNL HEPW effort is to generate 5-kJ pulses capable of compression to 5ps at 1053nm, enabling advanced x-ray backlighters and possible demonstration of fast ignition. We discuss the front-end of the laser design from the fiber master oscillator, which generates the mode-locked 20nm bandwidth initial pulses through the 10mJ output of the large flattened mode (LFM) fiber amplifier. Development of an all fiber front end requires technological breakthroughs in the key areas of the master oscillator and fiber amplification. Chirped pulse amplification in optical fibers has been demonstrated to 1mJ. Further increase is limited by the onset of stimulated Raman scattering (SRS). We have recently demonstrated a new flattened mode fiber technology, which reduces peak power for a given energy and thus the onset of SRS. Controlled experiments with 1st generation fibers yielded 0.5mJ of energy while significantly increasing the point at which nonlinear optical effects degrade the amplified pulse. In this paper we will discuss our efforts to extend this work to greater than 20mJ using our large flattened mode fiber amplifier.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
15005171
Report Number(s):
UCRL-JC-152561; TRN: US0401576
Resource Relation:
Conference: Third International Conference on Inertial Fusion Science and Applications, Monterey, CA (US), 09/07/2003--09/12/2003; Other Information: PBD: 5 Sep 2003
Country of Publication:
United States
Language:
English