skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Physical basis for materials synthesis using biomineralization

Technical Report ·
DOI:https://doi.org/10.2172/15005096· OSTI ID:15005096

Since the dawn of life on earth, organisms have directed the crystallization of inorganic ions from solution to form minerals that meet specific biological needs. The resulting materials often exhibit remarkable properties, making the processes involved in biomineralization of interest to a wide array of scientific disciplines. From a geochemical standpoint, perhaps the most important consequence is that CaCO{sub 3} biomineral formation occurs in the Oceans on such a large scale that it influences many aspects of seawater chemistry and results in sequestration of carbon in the form of carbonate sediments. In this manner, the products of biomineralization are preserved in the rock record and serve as an extensive chronicle of the interplay between biota and the earth system environment. From the point of view of materials synthesis, biological control over epitaxy is an elegant example of self-organization in complex molecular systems. Through selective introduction of peptides and proteins, living organisms deterministically modify nucleation, step kinetics, surface morphologies, and facet stabilities to produce nanophase materials, topologically complex single-crystals, and multi-layer composite. The resulting materials have biological functions as diverse as structural supports, porous filtration media, grinding and cutting tools, lenses, gravity sensors and magnetic guidance systems. As Table I shows, calcium carbonate minerals are ubiquitous amongst these biomineral structures. In addition , calcium carbonate is a well studied material that is easily crystallized and has known solution chemistry. Consequently, the calcium carbonate system provides an excellent model for investigating biomineralization processes. Surprisingly, in spite of the identification of carbonate biogenesis as a critical contributor to the carbon reservoir mediating climate change, and the enormous potential of biomimetic synthesis for production of tailored, crystalline nano- and micro-structured materials, the fundamental physical controls on carbonate biomineral formation remain poorly understood. Carbonates are formed in diverse environments almost exclusively by living organisms. These naturally occurring marine and fresh water minerals most commonly occur as the polymorphs of calcite, aragonite and vaterite which are nucleated and grown in the exoskeletons and tissues of marine and freshwater organisms ranging from simple bacteria and algae to crustaceans, molluscs, or sponges. It is known that the soluble fraction associated with mineralizing parts of organisms plays a primary role in crystal formation. In the formation of molluscan shells, this fraction is distinguished by the common presence of aspartic acid rich amino acid mixtures. It is also known that carbonates exposed to different polyamino acids exhibit different crystal habits. Belcher et al. showed that exposing growing CaCO{sub 3} crystals alternately to solutions containing polyanionic proteins associated with the aragonitic and calcitic layers of mollusc shells led to sequential switching of the crystal structure of the newly grown material between that of aragonite and calcite. Further work has demonstrated that these protein mixtures alter the morphology of the calcite growth surface and that they contain two fractions effecting growth: a step-binding fraction that inhibits step advancement on calcite surfaces, and a surface binding fraction that appears to lead to the subsequent nucleation of aragonite. Wierzbicki et al. found that polyaspartate molecules (ASP{sub 20}) bind to calcite surfaces. Finally, modeling of ASP{sub 15} binding to calcite planes predicts large binding energies for well defined orientations. This and related evidence shows that systematic relationships between crystal morphology and surface interactions with the reactive groups of the organic molecules must exist. However, the interplay between surface chemistry and the physical processes of nucleation and crystal growth are poorly understood because, until recently only ex situ biochemical studies focusing on the effect of changes in solution chemistry and/or surface stereo-chemistry on macroscopic crystal morphology had been performed.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
15005096
Report Number(s):
UCRL-ID-139313; TRN: US200414%%594
Resource Relation:
Other Information: PBD: 16 May 2000
Country of Publication:
United States
Language:
English

Similar Records

Biomolecular Modification of Inorganic Crystal Growth
Book · Fri Apr 27 00:00:00 EDT 2007 · OSTI ID:15005096

Nucleation of metastable aragonite CaCO 3 in seawater
Journal Article · Wed Mar 04 00:00:00 EST 2015 · Proceedings of the National Academy of Sciences of the United States of America · OSTI ID:15005096

Coral acid rich protein selects vaterite polymorph in vitro
Journal Article · Sat Feb 01 00:00:00 EST 2020 · Journal of Structural Biology · OSTI ID:15005096