skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Evolution of a Hierarchical Partitioning Algorithm for Large-Scale Scientific Data: Three Steps of Increasing Complexity

Conference ·

As scientific data sets grow exponentially in size, the need for scalable algorithms that heuristically partition the data increases. In this paper, we describe the three-step evolution of a hierarchical partitioning algorithm for large-scale spatio-temporal scientific data sets generated by massive simulations. The first version of our algorithm uses a simple top-down partitioning technique, which divides the data by using a four-way bisection of the spatio-temporal space. The shortcomings of this algorithm lead to the second version of our partitioning algorithm, which uses a bottom-up approach. In this version, a partition hierarchy is constructed by systematically agglomerating the underlying Cartesian grid that is placed on the data. Finally, the third version of our algorithm utilizes the intrinsic topology of the data given in the original scientific problem to build the partition hierarchy in a bottom-up fashion. Specifically, the topology is used to heuristically agglomerate the data at each level of the partition hierarchy. Despite the growing complexity in our algorithms, the third version of our algorithm builds partition hierarchies in less time and is able to build trees for larger size data sets as compared to the previous two versions.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
15004382
Report Number(s):
UCRL-JC-151476; TRN: US201015%%559
Resource Relation:
Conference: 15th International Conference on Scientific and Statistical Data Base Management, Cambridge, MA, Jul 09 - Jul 11, 2003
Country of Publication:
United States
Language:
English

Similar Records