skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development of a Detector to Measure the Angular Dependence of the Cosmic Ray Induced Neutron Background Flux at Ground Level

Technical Report ·
DOI:https://doi.org/10.2172/15003244· OSTI ID:15003244

The detection of low intensity sources of radiation in containers is of particular interest for arms control, non-proliferation and nuclear smuggling activities. Attempts to procure and smuggle nuclear materials that could be used in terrorist activities have been well documented in recent years. These incidents have included fissile materials such, as plutonium and uranium, as well as medical and industrial isotopes that could be used in a Radiation Dispersal Device. The vast majority of these incidents have been discovered through human intelligence work due to the difficulty of using radiation monitoring. The detection of radiation sources in well-shielded containers presents a difficult technological challenge. Few neutrons and gamma rays may escape from the container and these may be obscured by the naturally occurring background. The world in general is a radioactive environment. Many elements in the earth's crust, as well as in common plants and building materials, emit a constant stream of radiation. In fact the ultimate limit on the detection of hidden sources is often the background level at the location of interest. It has long been understood that knowledge of the directionality of this background can be used to improve the signal/noise ratio in detectors used for these measurements. Imaging detectors are one method of reducing the effect of the background, but this reduction comes at the expensive of a huge increase in detector complexity. Hence these systems, while important in some specific applications, are probably not suited for the deployment of many detectors over a large area. There may be another way of reducing the effect of backgrounds on monitoring measurements. This method consists of using knowledge of the directional dependence of the background flux to help reduce its effect on the detectors in question. An accurate knowledge of this angular distribution allows one to develop better shielding designs for the detectors.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
15003244
Report Number(s):
UCRL-ID-146964; TRN: US0402520
Resource Relation:
Other Information: PBD: 28 Jan 2002
Country of Publication:
United States
Language:
English