skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Stress corrosion cracking of candidate materials for nuclear waste containers

Conference ·
OSTI ID:137660

Types 304L and 316L stainless steel (SS), Incoloy 825, Cu, Cu-30%Ni, and Cu-7%Al have been selected as candidate materials for the containment of high-level nuclear waste at the proposed Yucca Mountain Site in Nevada. The susceptibility of these materials to stress corrosion cracking has been investigated by slow-strain-rate tests (SSRTs) in water which simulates that from well J-13 (J-13 water) and is representative of the groundwater present at the Yucca Mountain site. The SSRTs were performed on specimens exposed to simulated J-13 water at 93{degree}C and at a strain rate 10{sup {minus}7} s{sup {minus}1} under crevice conditions and at a strain rate of 10{sup {minus}8} s{sup {minus}1} under both crevice and noncrevice conditions. All the tests were interrupted after nominal elongation strains of 1--4%. Examination by scanning electron microscopy showed some crack initiation in virtually all specimens. Optical microscopy of metallographically prepared transverse sections of Type 304L SS suggests that the crack depths are small (<10 {mu}m). Preliminary results suggest that a lower strain rate increases the severity of cracking of Types 304L and 316L SS, Incoloy 825, and Cu but has virtually no effect on Cu-30%Ni and Cu-7%Al. Differences in susceptibility to cracking were evaluated in terms of a stress ratio, which is defined as the ratio of the increase in stress after local yielding in the environment to the corresponding stress increase in an identical test in air, both computed at the same strain. On the basis of this stress ratio, the ranking of materials in order of increasing resistance to cracking is: Types 304L SS < 316L SS < Incoloy 825 {congruent} Cu-30%Ni < Cu {congruent} Cu-7%Al. 9 refs., 12 figs., 7 tabs.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
DOE Contract Number:
W-31109-ENG-38
OSTI ID:
137660
Report Number(s):
CONF-900403-3; ON: DE90003827; TRN: 90:008054
Resource Relation:
Conference: NACE Corrosion `90, Las Vegas, NV (United States), 23-27 Apr 1990; Other Information: PBD: Sep 1989
Country of Publication:
United States
Language:
English