skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantum spin Hall phase in 2D trigonal lattice

Abstract

The quantum spin Hall (QSH) phase is an exotic phenomena in condensed-matter physics. Here we show that a minimal basis of three orbitals (s, px, py) is required to produce a QSH phase via nearest-neighbour hopping in a two-dimensional trigonal lattice. Tight-binding model analyses and calculations show that the QSH phase arises from a spin–orbit coupling (SOC)-induced s–p band inversion or p–p bandgap opening at Brillouin zone centre (Γ point), whose topological phase diagram is mapped out in the parameter space of orbital energy and SOC. Remarkably, based on first-principles calculations, this exact model of QSH phase is shown to be realizable in an experimental system of Au/GaAs(111) surface with an SOC gap of ~73 meV, facilitating the possible room-temperature measurement. Finally, our results will extend the search for substrate supported QSH materials to new lattice and orbital types.

Authors:
 [1];  [2];  [3]
  1. Univ. of Science and Technology of China, Anhui (China); Univ. of Utah, Salt Lake City, UT (United States)
  2. Univ. of Utah, Salt Lake City, UT (United States)
  3. Univ. of Utah, Salt Lake City, UT (United States); Collaborative Innovation Center of Quantum Matter, Beijing (China)
Publication Date:
Research Org.:
Univ. of Utah, Salt Lake City, UT (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1361410
Grant/Contract Number:  
FG02-04ER46148
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 7; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; electronic structure; topological insulators

Citation Formats

Wang, Z. F., Jin, Kyung -Hwan, and Liu, Feng. Quantum spin Hall phase in 2D trigonal lattice. United States: N. p., 2016. Web. doi:10.1038/ncomms12746.
Wang, Z. F., Jin, Kyung -Hwan, & Liu, Feng. Quantum spin Hall phase in 2D trigonal lattice. United States. https://doi.org/10.1038/ncomms12746
Wang, Z. F., Jin, Kyung -Hwan, and Liu, Feng. 2016. "Quantum spin Hall phase in 2D trigonal lattice". United States. https://doi.org/10.1038/ncomms12746. https://www.osti.gov/servlets/purl/1361410.
@article{osti_1361410,
title = {Quantum spin Hall phase in 2D trigonal lattice},
author = {Wang, Z. F. and Jin, Kyung -Hwan and Liu, Feng},
abstractNote = {The quantum spin Hall (QSH) phase is an exotic phenomena in condensed-matter physics. Here we show that a minimal basis of three orbitals (s, px, py) is required to produce a QSH phase via nearest-neighbour hopping in a two-dimensional trigonal lattice. Tight-binding model analyses and calculations show that the QSH phase arises from a spin–orbit coupling (SOC)-induced s–p band inversion or p–p bandgap opening at Brillouin zone centre (Γ point), whose topological phase diagram is mapped out in the parameter space of orbital energy and SOC. Remarkably, based on first-principles calculations, this exact model of QSH phase is shown to be realizable in an experimental system of Au/GaAs(111) surface with an SOC gap of ~73 meV, facilitating the possible room-temperature measurement. Finally, our results will extend the search for substrate supported QSH materials to new lattice and orbital types.},
doi = {10.1038/ncomms12746},
url = {https://www.osti.gov/biblio/1361410}, journal = {Nature Communications},
issn = {2041-1723},
number = ,
volume = 7,
place = {United States},
year = {Wed Sep 07 00:00:00 EDT 2016},
month = {Wed Sep 07 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 34 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Quantum Spin Hall Effect in Graphene
journal, November 2005


Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells
journal, December 2006


Quantum Spin Hall Insulator State in HgTe Quantum Wells
journal, November 2007


Evidence for Helical Edge Modes in Inverted InAs / GaSb Quantum Wells
journal, September 2011


Quantum Spin Hall Effect and Enhanced Magnetic Response by Spin-Orbit Coupling
journal, December 2006


Quantum Spin Hall Effect in Silicene and Two-Dimensional Germanium
journal, August 2011


Organic topological insulators in organometallic lattices
journal, February 2013


Prediction of a Two-Dimensional Organic Topological Insulator
journal, May 2013


Proximity-induced giant spin-orbit interaction in epitaxial graphene on a topological insulator
journal, February 2013


Large-Gap Quantum Spin Hall Insulators in Tin Films
journal, September 2013


Prediction of Large-Gap Two-Dimensional Topological Insulators Consisting of Bilayers of Group III Elements with Bi
journal, April 2014


Functionalized germanene as a prototype of large-gap two-dimensional topological insulators
journal, March 2014


Epitaxial growth of large-gap quantum spin Hall insulator on semiconductor surface
journal, September 2014


Formation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin orbit coupling
journal, November 2014


The nontrivial electronic structure of Bi/Sb honeycombs on SiC(0001)
journal, February 2015


Robust Large Gap Two-Dimensional Topological Insulators in Hydrogenated III–V Buckled Honeycombs
journal, September 2015


Large-gap quantum spin Hall states in decorated stanene grown on a substrate
journal, August 2015


Topological phases in two-dimensional materials: a review
journal, May 2016


Strain-driven band inversion and topological aspects in Antimonene
journal, November 2015


Quantum anomalous Hall effect and related topological electronic states
journal, May 2015


Au wetting and nanoparticle stability on GaAs(111)B
journal, December 2006


Stable Nontrivial Z 2 Topology in Ultrathin Bi (111) Films: A First-Principles Study
journal, September 2011


Topological states of non-Dirac electrons on a triangular lattice
journal, January 2016


Topological field theory of time-reversal invariant insulators
journal, November 2008


s d 2 Graphene: Kagome Band in a Hexagonal Lattice
journal, December 2014


A Strategy to Create Spin-Split Metallic Bands on Silicon Using a Dense Alloy Layer
journal, April 2014


Selective doping in a surface band and atomic structures of the Ge(111) $(\sqrt{3}\times \sqrt{3})\mathrm{R}3 0^{\circ}$–Au surface
journal, December 2012


wannier90: A tool for obtaining maximally-localised Wannier functions
journal, May 2008


Tuning Topological Edge States of Bi(111) Bilayer Film by Edge Adsorption
journal, April 2014


Observation of a universal donor-dependent vibrational mode in graphene
journal, February 2014


High-temperature superconductivity in potassium-coated multilayer FeSe thin films
journal, June 2015


One-dimensional topological edge states of bismuth bilayers
journal, August 2014


Topological edge states in a high-temperature superconductor FeSe/SrTiO3(001) film
journal, July 2016


Spin-polarized quantum well states on Bi 2 x Fe x Se 3
journal, April 2015


Ab initiomolecular dynamics for liquid metals
journal, January 1993


Robust Large Gap Two-Dimensional Topological Insulators in Hydrogenated III–V Buckled Honeycombs
journal, September 2015


Prediction of Large-Gap Two-Dimensional Topological Insulators Consisting of Bilayers of Group III Elements with Bi
journal, April 2014


Observation of a universal donor-dependent vibrational mode in graphene
journal, February 2014


High-temperature superconductivity in potassium-coated multilayer FeSe thin films
journal, June 2015


A Strategy to Create Spin-Split Metallic Bands on Silicon Using a Dense Alloy Layer
journal, April 2014


Formation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin orbit coupling
journal, November 2014


Strain-driven band inversion and topological aspects in Antimonene
journal, November 2015


Epitaxial growth of large-gap quantum spin Hall insulator on semiconductor surface
journal, September 2014


Topological phases in two-dimensional materials: a review
journal, May 2016


Spatial and Energy Distribution of Topological Edge States in Single Bi(111) Bilayer
journal, July 2012


Self-Assembled Si(111) Surface States: 2D Dirac Material for THz Plasmonics
journal, July 2015


Works referencing / citing this record:

Quantum Spin Hall Materials
journal, July 2019


Computational design of two-dimensional topological materials: Two-dimensional topological materials
journal, March 2017


Formation of a large gap quantum spin Hall phase in a 2D trigonal lattice with three p-orbitals
journal, January 2018


Oxygen-functionalized TlTe buckled honeycomb from first-principles study
journal, January 2019


Fully spin-polarized quadratic non-Dirac bands realized quantum anomalous Hall effect
journal, January 2020


Topological phase transition induced by p x,y and p z band inversion in a honeycomb lattice
journal, January 2019


Orbital design of topological insulators from two-dimensional semiconductors
journal, January 2019


Robust large gap quantum spin Hall insulators in methyl and ethynyl functionalized TlSb buckled honeycombs
journal, July 2018


Prediction of intrinsic two-dimensional non-Dirac topological insulators in triangular metal-organic frameworks
journal, January 2019


Surface alloy engineering in 2D trigonal lattice: giant Rashba spin splitting and two large topological gaps
journal, February 2018


Comparison of quantum spin Hall states in quasicrystals and crystals
journal, August 2019


Kagome bands disguised in a coloring-triangle lattice
journal, March 2019


Quantum Spin Hall Effect and Spin Bott Index in a Quasicrystal Lattice
journal, September 2018


Hourglass Fermion in Two-Dimensional Material
journal, September 2019