skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SELF-POWERED WIRELESS SENSOR NODE POWER MODELING BASED ON IEEE 802.11 COMMUNICATION PROTOCOL

Abstract

Design and technical advancements in sensing, processing, and wireless communication capabilities of small, portable devices known as wireless sensor nodes (WSNs) have drawn extensive research attention and are vastly applied in science and engineering applications. The WSNs are typically powered by a chemical battery source that has a load dependent finite lifetime. Most applications, including the nuclear industry applications, require WSNs to operate for an extended period of time beginning with their deployment. To ensure longevity, it is important to develop self-powered WSNs. The benefit of self-powered WSNs goes far beyond the cost savings of removing the need for cable installation and maintenance. Self-powered WSNs will potentially offer significant expansion in remote monitoring of nuclear facilities, and provide important data on plant equipment and component status during normal operation, as well as in case of abnormal operation, station blackouts or post-accident evaluation. Advancements in power harvesting technologies enable electric energy generation from many sources, including kinetic, thermal, and radiated energy. For the ongoing research at Idaho National Laboratory, a solid-state thermoelectric-based technology, the thermoelectric generator (TEG), is used to convert thermal energy to power a WSN. The design and development of TEGs to power WSNs that would remain active formore » a long period of time requires comprehensive understanding of WSN operational. This motivates the research in modeling the lifetime, i.e., power consumption, of a WSN by taking into consideration various node and network level activities. A WSN must perform three essential tasks: sense events, perform quick local information processing of sensed events, and wirelessly exchange locally processed data with the base station or with other WSNs in the network. Each task has a power cost per unit tine and an additional cost when switching between tasks. There are number of other considerations that must also be taken into account when computing the power consumption associated with each task. The considerations includes: number of events occurring in a fixed active time period and the duration of each event, event-information processing time, total communication time, number of retransmission, etc. Additionally, at the network level the communication of information data packets between WSNs involves collisions, latency, andretransmission, which result in unanticipated power losses. This paper presents stochastic modeling of power demand for a schedule-driven WSN utilizing Institute of Electrical and Electronics Engineers, IEEE, 802.11 communication protocols. The model captures the generic operation of a schedule-driven WSN when an external event occurs, i.e., sensing, following by processing, and followed by communication. The results are verified via simulation.« less

Authors:
; ;
Publication Date:
Research Org.:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Org.:
USDOE Office of Nuclear Energy (NE)
OSTI Identifier:
1347449
Report Number(s):
INL/CON-15-37019
DOE Contract Number:  
AC07-05ID14517
Resource Type:
Conference
Resource Relation:
Conference: International Congress on Advances in Nuclear Power Plants, San Francisco, 4/17/2016 - 4/20/2016
Country of Publication:
United States
Language:
English
Subject:
IEEE 802.11 Protocol; Modeling and Simulation; Self Powered Wireless Sensors

Citation Formats

Agarwal, Vivek, DeCarlo, Raymond A., and Tsoukalas, Lefteri H. SELF-POWERED WIRELESS SENSOR NODE POWER MODELING BASED ON IEEE 802.11 COMMUNICATION PROTOCOL. United States: N. p., 2016. Web.
Agarwal, Vivek, DeCarlo, Raymond A., & Tsoukalas, Lefteri H. SELF-POWERED WIRELESS SENSOR NODE POWER MODELING BASED ON IEEE 802.11 COMMUNICATION PROTOCOL. United States.
Agarwal, Vivek, DeCarlo, Raymond A., and Tsoukalas, Lefteri H. 2016. "SELF-POWERED WIRELESS SENSOR NODE POWER MODELING BASED ON IEEE 802.11 COMMUNICATION PROTOCOL". United States. https://www.osti.gov/servlets/purl/1347449.
@article{osti_1347449,
title = {SELF-POWERED WIRELESS SENSOR NODE POWER MODELING BASED ON IEEE 802.11 COMMUNICATION PROTOCOL},
author = {Agarwal, Vivek and DeCarlo, Raymond A. and Tsoukalas, Lefteri H.},
abstractNote = {Design and technical advancements in sensing, processing, and wireless communication capabilities of small, portable devices known as wireless sensor nodes (WSNs) have drawn extensive research attention and are vastly applied in science and engineering applications. The WSNs are typically powered by a chemical battery source that has a load dependent finite lifetime. Most applications, including the nuclear industry applications, require WSNs to operate for an extended period of time beginning with their deployment. To ensure longevity, it is important to develop self-powered WSNs. The benefit of self-powered WSNs goes far beyond the cost savings of removing the need for cable installation and maintenance. Self-powered WSNs will potentially offer significant expansion in remote monitoring of nuclear facilities, and provide important data on plant equipment and component status during normal operation, as well as in case of abnormal operation, station blackouts or post-accident evaluation. Advancements in power harvesting technologies enable electric energy generation from many sources, including kinetic, thermal, and radiated energy. For the ongoing research at Idaho National Laboratory, a solid-state thermoelectric-based technology, the thermoelectric generator (TEG), is used to convert thermal energy to power a WSN. The design and development of TEGs to power WSNs that would remain active for a long period of time requires comprehensive understanding of WSN operational. This motivates the research in modeling the lifetime, i.e., power consumption, of a WSN by taking into consideration various node and network level activities. A WSN must perform three essential tasks: sense events, perform quick local information processing of sensed events, and wirelessly exchange locally processed data with the base station or with other WSNs in the network. Each task has a power cost per unit tine and an additional cost when switching between tasks. There are number of other considerations that must also be taken into account when computing the power consumption associated with each task. The considerations includes: number of events occurring in a fixed active time period and the duration of each event, event-information processing time, total communication time, number of retransmission, etc. Additionally, at the network level the communication of information data packets between WSNs involves collisions, latency, andretransmission, which result in unanticipated power losses. This paper presents stochastic modeling of power demand for a schedule-driven WSN utilizing Institute of Electrical and Electronics Engineers, IEEE, 802.11 communication protocols. The model captures the generic operation of a schedule-driven WSN when an external event occurs, i.e., sensing, following by processing, and followed by communication. The results are verified via simulation.},
doi = {},
url = {https://www.osti.gov/biblio/1347449}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Apr 01 00:00:00 EDT 2016},
month = {Fri Apr 01 00:00:00 EDT 2016}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: