skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: GAMSOR: Gamma Source Preparation and DIF3D Flux Solution

Technical Report ·
DOI:https://doi.org/10.2172/1343095· OSTI ID:1343095
 [1];  [1];  [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States)

Nuclear reactors that rely upon the fission reaction have two modes of thermal energy deposition in the reactor system: neutron absorption and gamma absorption. The gamma rays are typically generated by neutron absorption reactions or during the fission process which means the primary driver of energy production is of course the neutron interaction. In conventional reactor physics methods, the gamma heating component is ignored such that the gamma absorption is forced to occur at the gamma emission site. For experimental reactor systems like EBR-II and FFTF, the placement of structural pins and assemblies internal to the core leads to problems with power heating predictions because there is no fission power source internal to the assembly to dictate a spatial distribution of the power. As part of the EBR-II support work in the 1980s, the GAMSOR code was developed to assist analysts in calculating the gamma heating. The GAMSOR code is a modified version of DIF3D and actually functions within a sequence of DIF3D calculations. The gamma flux in a conventional fission reactor system does not perturb the neutron flux and thus the gamma flux calculation can be cast as a fixed source problem given a solution to the steady state neutron flux equation. This leads to a sequence of DIF3D calculations, called the GAMSOR sequence, which involves solving the neutron flux, then the gamma flux, then combining the results to do a summary edit. In this manuscript, we go over the GAMSOR code and detail how it is put together and functions. We also discuss how to setup the GAMSOR sequence and input for each DIF3D calculation in the GAMSOR sequence. With the GAMSOR capability, users can take any valid steady state DIF3D calculation and compute the power distribution due to neutron and gamma heating. The MC2-3 code is the preferable companion code to use for generating neutron and gamma cross section data, but the GAMSOR code can accept cross section data from other sources. To further this aspect, an additional utility code was created which demonstrates how to merge the neutron and gamma cross section data together to carry out a simultaneous solve of the two systems.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC02-06CH11357
OSTI ID:
1343095
Report Number(s):
ANL/NE-16/50; 132835; TRN: US1701921
Country of Publication:
United States
Language:
English