skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Biological Sampling Variability Study

Technical Report ·
DOI:https://doi.org/10.2172/1334893· OSTI ID:1334893
 [1];  [1]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

There are many sources of variability that exist in the sample collection and analysis process. This paper addresses many, but not all, sources of variability. The main focus of this paper was to better understand and estimate variability due to differences between samplers. Variability between days was also studied, as well as random variability within each sampler. Experiments were performed using multiple surface materials (ceramic and stainless steel), multiple contaminant concentrations (10 spores and 100 spores), and with and without the presence of interfering material. All testing was done with sponge sticks using 10-inch by 10-inch coupons. Bacillus atrophaeus was used as the BA surrogate. Spores were deposited using wet deposition. Grime was coated on the coupons which were planned to include the interfering material (Section 3.3). Samples were prepared and analyzed at PNNL using CDC protocol (Section 3.4) and then cultured and counted. Five samplers were trained so that samples were taken using the same protocol. Each sampler randomly sampled eight coupons each day, four coupons with 10 spores deposited and four coupons with 100 spores deposited. Each day consisted of one material being tested. The clean samples (no interfering materials) were run first, followed by the dirty samples (coated with interfering material). There was a significant difference in recovery efficiency between the coupons with 10 spores deposited (mean of 48.9%) and those with 100 spores deposited (mean of 59.8%). There was no general significant difference between the clean and dirty (containing interfering material) coupons or between the two surface materials; however, there was a significant interaction between concentration amount and presence of interfering material. The recovery efficiency was close to the same for coupons with 10 spores deposited, but for the coupons with 100 spores deposited, the recovery efficiency for the dirty samples was significantly larger (65.9% - dirty vs. 53.6% - clean) (see Figure 4.1). Variance component analysis was used to estimate the amount of variability for each source of variability. There wasn’t much difference in variability for dirty and clean samples, as well as between materials, so these results were pooled together. There was a significant difference in amount of concentration deposited, so results were separated for the 10 spore and 100 spore deposited tests. In each case the within sampler variability was the largest with variances of 426.2 for 10 spores and 173.1 for 100 spores. The within sampler variability constitutes the variability between the four samples of similar material, interfering material, and concentration taken by each sampler. The between sampler variance was estimated to be 0 for 10 spores and 1.2 for 100 spores. The between day variance was estimated to be 42.1 for 10 spores and 78.9 for 100 spores. Standard deviations can be calculated in each case by taking the square root of the variance.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1334893
Report Number(s):
PNNL-25184; 400904120
Country of Publication:
United States
Language:
English