skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High Pressure Biomass Gasification

Technical Report ·
DOI:https://doi.org/10.2172/1275263· OSTI ID:1275263
 [1]
  1. Georgia Tech Research Corporation, Atlanta, GA (United States)

According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However, similar approach for biomass gasification was not very useful and was the impetus for this study. Specifically, we aimed this study at three broad objectives: (i) defining operating conditions at which C2-C4 hydrocarbons are formed since these represent loss of carbon efficiency, (ii) understanding the formation of tar species which create downstream processing difficulties in addition of carbon efficiency loss, and (iii) kinetics of biomass gasification where it would be possible to understand the effect of operating conditions and gas phase composition.

Research Organization:
Georgia Institute of Technology, Atlanta, GA (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Sustainable Transportation Office. Bioenergy Technologies Office
DOE Contract Number:
FG36-08GO18160
OSTI ID:
1275263
Report Number(s):
DOE-GTRC-18160
Country of Publication:
United States
Language:
English