skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mechanistic Feature-Scale Profile Simulation of SiO2LPCVD by TEOS Pyrolysis

Journal Article · · Journal Vacuum Society Technology
OSTI ID:12674

Simulation of chemical vapor deposition (CVD) in submicron features typical of semiconductor devices has been facilitated by extending the EVOLVE thin film etch and deposition simulation code to use thermal reaction mechanisms expressed in the Chemkin format. This allows consistent coupling between EVOLVE and reactor simulation codes that use Chemkin. In an application of a reactor-scale simulation code providing surface fluxes to a feature-scale simulation code, a proposed reaction mechanism for TEOS pyrolysis to deposit SiO{sub 2}, which had been applied successfully to reactor-scale simulation, is seen not to predict the low step coverage over trenches observed under short reactor residence time conditions. An apparent discrepancy between the mechanism and profile-evolution observations is a reduced degree of sensitivity of the deposition rate to the presence of reaction products, i.e., the byproduct inhibition effect is underpredicted. The cause of the proposed mechanism's insensitivity to byproduct inhibition is investigated with the combined reactor and topography simulators first by manipulating the surface to volume ratio of a simulated reactor and second by calibrating parameters in the proposed mechanism such as the calculated free energies of surface molecules. The conclusion is that the byproduct inhibition can not be enhanced to fit profile evolution data without comprising agreement with reactor scale data by simply adjusting mechanism parameters. Thus, additional surface reaction channels seem to be required to reproduce simultaneously experimental reactor-scale growth rates and experimental step coverages.

Research Organization:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
AC04-94AL85000
OSTI ID:
12674
Report Number(s):
SAND99-2407J; TRN: AH200120%%463
Journal Information:
Journal Vacuum Society Technology, Other Information: Submitted to Journal Vacuum Society Technology; PBD: 13 Sep 1999
Country of Publication:
United States
Language:
English