skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nuclear magnetic resonance studies of macroscopic morphology and dynamics

Thesis/Dissertation ·
DOI:https://doi.org/10.2172/125104· OSTI ID:125104
 [1]
  1. Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

Nuclear magnetic resonance techniques are traditionally used to study molecular level structure and dynamics with a noted exception in medically applied NMR imaging (MRI). In this work, new experimental methods and theory are presented relevant to the study of macroscopic morphology and dynamics using NMR field gradient techniques and solid state two-dimensional exchange NMR. The goal in this work is not to take some particular system and study it in great detail, rather it is to show the utility of a number of new and novel techniques using ideal systems primarily as a proof of principle. By taking advantage of the analogy between NMR imaging and diffraction, one may simplify the experiments necessary for characterizing the statistical properties of the sample morphology. For a sample composed of many small features, e.g. a porous medium, the NMR diffraction techniques take advantage of both the narrow spatial range and spatial isotropy of the sample`s density autocorrelation function to obtain high resolution structural information in considerably less time than that required by conventional NMR imaging approaches. The time savings of the technique indicates that NMR diffraction is capable of finer spatial resolution than conventional NMR imaging techniques. Radio frequency NMR imaging with a coaxial resonator represents the first use of cylindrically symmetric field gradients in imaging. The apparatus as built has achieved resolution at the micron level for water samples, and has the potential to be very useful in the imaging of circularly symmetric systems. The study of displacement probability densities in flow through a random porous medium has revealed the presence of features related to the interconnectedness of the void volumes. The pulsed gradient techniques used have proven successful at measuring flow properties for time and length scales considerably shorter than those studied by more conventional techniques.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
DOE Contract Number:
AC03-76SF00098
OSTI ID:
125104
Report Number(s):
LBL-37827; ON: DE96004024; TRN: 96:000042
Resource Relation:
Other Information: TH: Thesis (Ph.D.); PBD: Sep 1995
Country of Publication:
United States
Language:
English

Similar Records

TU-EF-BRA-00: MR Basics I
Journal Article · Mon Jun 15 00:00:00 EDT 2015 · Medical Physics · OSTI ID:125104

TU-EF-BRA-01: NMR and Proton Density MRI of the 1D Patient
Journal Article · Mon Jun 15 00:00:00 EDT 2015 · Medical Physics · OSTI ID:125104

TU-EF-BRA-02: Longitudinal Proton Spin Relaxation and T1-Imaging
Journal Article · Mon Jun 15 00:00:00 EDT 2015 · Medical Physics · OSTI ID:125104