skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices

Technical Report ·
DOI:https://doi.org/10.2172/1244690· OSTI ID:1244690

The Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices (Project) investigated, analyzed and modeled advanced turbine control schemes with the objective of increasing the energy harvested by hydrokinetic turbines in turbulent flow. Ocean Renewable Power Company (ORPC) implemented and validated a feedforward controller to increase power capture; and applied and tested the controls on ORPC’s RivGen® Power Systems in Igiugig, Alaska. Assessments of performance improvements were made for the RivGen® in the Igiugig environment and for ORPC’s TidGen® Power System in a reference tidal environment. Annualized Energy Production (AEP) and Levelized Cost of Energy (LCOE) improvements associated with implementation of the recommended control methodology were made for the TidGen® Power System in the DOE reference tidal environment. System Performance Advancement (SPA) goals were selected for the project. SPA targets were to improve Power to Weight Ratio (PWR) and system Availability, with the intention of reducing Levelized Cost of Electricity (LCOE). This project focused primarily reducing in PWR. Reductions in PWR of 25.5% were achieved. Reductions of 20.3% in LCOE were achieved. This project evaluated four types of controllers which were tested in simulation, emulation, a laboratory flume, and the field. The adaptive Kω2 controller performs similarly to the non-adaptive version of the same controller and may be useful in tidal channels where the mean velocity is continually evolving. Trends in simulation were largely verified through experiments, which also provided the opportunity to test assumptions about turbine responsiveness and control resilience to varying scales of turbulence. Laboratory experiments provided an essential stepping stone between simulation and implementation on a field-scale turbine. Experiments also demonstrated that using “energy loss” as a metric to differentiate between well-designed controllers operating at an optimal tip-speed ratio set-point is difficult, which anticipated the outcome from field experiments. The clear message is that the feedforward Kω2 controller out-performs the feedback controllers in almost all aspects and modes of evaluation. The controllers proved a substantial improvement over the baseline performance of the TidGen® turbine, in terms of energy capture. The effects of noise-contaminated angular velocity signals were investigated and validated by simulation as an explanation for the performance limitations observed for TidGen® turbine operations in Eastport, Maine. Measurements of loads performed as part of the laboratory testing indicate that there are limited differences in average axial thrust force between control architectures. This suggests that none of the control strategies are likely to substantially affect loads on the turbine support structure. Velocity measurements during the ORPC RivGen® turbine deployment at Igiugig, Alaska, in 2014 were used to assess the variability of the river flow. Results suggest that the river flow is approximately steady, in the mean sense, at any particular location in the river, with random turbulent fluctuations that are around 10% of the mean flow. The mean flow in the center channel of the river is 2.5 m/s, with reductions near the riverbanks and in the shallows. Spectral analysis and lagged correlation results indicate that temporal fluctuations at a given point are dominated by large scale fluctuations, such that measurements at the turbine location are just as useful for inflow control implementation as upstream measurements. At this site, and likely at many other river sites, flow is generally steady at a given location, but flow varies dramatically between locations, particularly laterally across the river. The primary result is that a lateral change in position of a few meters results in changes to flow speed that far exceed the turbulence fluctuations at any given location. The turbulence is dominated by long time scales. Following final system tests, the RivGen® device was submerged and each evaluated controller was tested across a range of gain/set point values and filter configurations for a minimum of 5 minutes, with longer runs attempted for well-performing cases. In addition to testing controllers during the 2015 deployment season, LGL Alaska Research Associates Inc. (LGL) performed a fish monitoring study in compliance with Alaska Department of Fish and Game fisheries habitat permit for the project. During the season, LGL reviewed 10% of 179 one-hour blocks of footage (6 minutes on the hour) and documented a total of over 1200 fish in the vicinity of the RivGen® device, including over 800 salmon smolt and over 350 adult salmon. No evidence of adverse effects including passage delay by upstream migrating salmon was noted. This is an important result for future deployments and has a direct impact on commercial system designs.

Research Organization:
Ocean Renewable Power Company, Portland, ME (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Wind and Water Technologies Office (EE-4W)
DOE Contract Number:
EE0006397
OSTI ID:
1244690
Report Number(s):
Final Scientific Report
Country of Publication:
United States
Language:
English

Similar Records

Power Take-off System for Marine Renewable Devices
Technical Report · Wed Feb 28 00:00:00 EST 2018 · OSTI ID:1244690

Recovery Act - Refinement of Cross Flow Turbine Airfoils
Technical Report · Fri Aug 30 00:00:00 EDT 2013 · OSTI ID:1244690

Igiugig Site Visit Report
Technical Report · Wed Nov 17 00:00:00 EST 2021 · OSTI ID:1244690