skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Single-Crystal Sapphire Optical Fiber Sensor Instrumentation

Abstract

This report summarizes technical progress on the program “Single-Crystal Sapphire Optical Fiber Sensor Instrumentation,” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. This project was completed in three phases, each with a separate focus. Phase I of the program, from October 1999 to April 2002, was devoted to development of sensing schema for use in high temperature, harsh environments. Different sensing designs were proposed and tested in the laboratory. Phase II of the program, from April 2002 to April 2009, focused on bringing the sensor technologies, which had already been successfully demonstrated in the laboratory, to a level where the sensors could be deployed in harsh industrial environments and eventually become commercially viable through a series of field tests. Also, a new sensing scheme was developed and tested with numerous advantages over all previous ones in Phase II. Phase III of the program, September 2009 to December 2013, focused on development of the new sensing scheme for field testing in conjunction with materials engineering of the improved sensor packaging lifetimes. In Phase I, three differentmore » sensing principles were studied: sapphire air-gap extrinsic Fabry-Perot sensors; intensity-based polarimetric sensors; and broadband polarimetric sensors. Black body radiation tests and corrosion tests were also performed in this phase. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. At the beginning of Phase II, in June 2004, the BPDI sensor was tested at the Wabash River coal gasifier facility in Terre Haute, Indiana. Due to business conditions at industrial partner and several logistical problems, this field test was not successful. An alternative high-temperature sensing system using sapphire wafer-based extrinsic Fabry-Perot interferometry was then developed as a significant improvement over the BPDI solution. From June 2006 to June 2008, three consecutive field tests were performed with the new sapphire wafer sensors at the TECO coal gasifier in Tampa, Florida. One of the sensors survived in the industrial coal gasifier for 7 months, over which time the existing thermocouples were replaced twice. The outcome of these TECO field tests suggests that the sapphire wafer sensor has very good potential to be commercialized. However packaging and sensor protection issues need additional development. During Phase III, several major improvements in the design and fabrication process of the sensor have been achieved through experiments and theoretical analysis. Studies on the property of the key components in the sensor head, including the sapphire fiber and sapphire wafer, were also conducted, for a better understanding of the sensor behavior. A final design based on all knowledge and experience has been developed, free of any issues encountered during the entire research. Sensors with this design performed well as expected in lab long-term tests, and were deployed in the sensing probe of the final coal-gasifier field test. Sensor packaging and protection was improved through materials engineering through testing of packaging designs in two blank probe packaging tests at Eastman Chemical in Kingsport, TN. Performance analysis of the blank probe packaging resulted in improve package designs culminating in a 3rd generation probe packaging utilized for the full field test of the sapphire optical sensor and materials designed sensor packaging.« less

Authors:
 [1];  [1];  [1];  [1]
  1. Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States)
Publication Date:
Research Org.:
Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1238357
DOE Contract Number:  
FC26-99FT40685
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION

Citation Formats

Pickrell, Gary, Scott, Brian, Wang, Anbo, and Yu, Zhihao. Single-Crystal Sapphire Optical Fiber Sensor Instrumentation. United States: N. p., 2013. Web. doi:10.2172/1238357.
Pickrell, Gary, Scott, Brian, Wang, Anbo, & Yu, Zhihao. Single-Crystal Sapphire Optical Fiber Sensor Instrumentation. United States. https://doi.org/10.2172/1238357
Pickrell, Gary, Scott, Brian, Wang, Anbo, and Yu, Zhihao. 2013. "Single-Crystal Sapphire Optical Fiber Sensor Instrumentation". United States. https://doi.org/10.2172/1238357. https://www.osti.gov/servlets/purl/1238357.
@article{osti_1238357,
title = {Single-Crystal Sapphire Optical Fiber Sensor Instrumentation},
author = {Pickrell, Gary and Scott, Brian and Wang, Anbo and Yu, Zhihao},
abstractNote = {This report summarizes technical progress on the program “Single-Crystal Sapphire Optical Fiber Sensor Instrumentation,” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. This project was completed in three phases, each with a separate focus. Phase I of the program, from October 1999 to April 2002, was devoted to development of sensing schema for use in high temperature, harsh environments. Different sensing designs were proposed and tested in the laboratory. Phase II of the program, from April 2002 to April 2009, focused on bringing the sensor technologies, which had already been successfully demonstrated in the laboratory, to a level where the sensors could be deployed in harsh industrial environments and eventually become commercially viable through a series of field tests. Also, a new sensing scheme was developed and tested with numerous advantages over all previous ones in Phase II. Phase III of the program, September 2009 to December 2013, focused on development of the new sensing scheme for field testing in conjunction with materials engineering of the improved sensor packaging lifetimes. In Phase I, three different sensing principles were studied: sapphire air-gap extrinsic Fabry-Perot sensors; intensity-based polarimetric sensors; and broadband polarimetric sensors. Black body radiation tests and corrosion tests were also performed in this phase. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. At the beginning of Phase II, in June 2004, the BPDI sensor was tested at the Wabash River coal gasifier facility in Terre Haute, Indiana. Due to business conditions at industrial partner and several logistical problems, this field test was not successful. An alternative high-temperature sensing system using sapphire wafer-based extrinsic Fabry-Perot interferometry was then developed as a significant improvement over the BPDI solution. From June 2006 to June 2008, three consecutive field tests were performed with the new sapphire wafer sensors at the TECO coal gasifier in Tampa, Florida. One of the sensors survived in the industrial coal gasifier for 7 months, over which time the existing thermocouples were replaced twice. The outcome of these TECO field tests suggests that the sapphire wafer sensor has very good potential to be commercialized. However packaging and sensor protection issues need additional development. During Phase III, several major improvements in the design and fabrication process of the sensor have been achieved through experiments and theoretical analysis. Studies on the property of the key components in the sensor head, including the sapphire fiber and sapphire wafer, were also conducted, for a better understanding of the sensor behavior. A final design based on all knowledge and experience has been developed, free of any issues encountered during the entire research. Sensors with this design performed well as expected in lab long-term tests, and were deployed in the sensing probe of the final coal-gasifier field test. Sensor packaging and protection was improved through materials engineering through testing of packaging designs in two blank probe packaging tests at Eastman Chemical in Kingsport, TN. Performance analysis of the blank probe packaging resulted in improve package designs culminating in a 3rd generation probe packaging utilized for the full field test of the sapphire optical sensor and materials designed sensor packaging.},
doi = {10.2172/1238357},
url = {https://www.osti.gov/biblio/1238357}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Dec 31 00:00:00 EST 2013},
month = {Tue Dec 31 00:00:00 EST 2013}
}