skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Delayed Gamma-Ray Spectroscopy for Non-Destructive Assay of Nuclear Materials

Technical Report ·
DOI:https://doi.org/10.2172/1236370· OSTI ID:1236370
 [1];  [1];  [2];  [3];  [4];  [4]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  4. Idaho National Lab. (INL), Idaho Falls, ID (United States)

High-­energy, beta-delayed gamma-­ray spectroscopy is a potential, non-­destructive assay techniques for the independent verification of declared quantities of special nuclear materials at key stages of the fuel cycle and for directly assaying nuclear material inventories for spent fuel handling, interim storage, reprocessing facilities, repository sites, and final disposal. Other potential applications include determination of MOX fuel composition, characterization of nuclear waste packages, and challenges in homeland security and arms control verification. Experimental measurements were performed to evaluate fission fragment yields, to test methods for determining isotopic fractions, and to benchmark the modeling code package. Experimental measurement campaigns were carried out at the IAC using a photo-­neutron source and at OSU using a thermal neutron beam from the TRIGA reactor to characterize the emission of high-­energy delayed gamma rays from 235U, 239Pu, and 241Pu targets following neutron induced fission. Data were collected for pure and combined targets for several irradiation/spectroscopy cycle times ranging from 10/10 seconds to 15/30 minutes.The delayed gamma-ray signature of 241Pu, a significant fissile constituent in spent fuel, was measured and compared to 239Pu. The 241Pu/239Pu ratios varied between 0.5 and 1.2 for ten prominent lines in the 2700-­3600 keV energy range. Such significant differences in relative peak intensities make it possible to determine relative fractions of these isotopes in a mixed sample. A method for determining fission product yields by fitting the energy and time dependence of the delayed gamma-­ray emission was developed and demonstrated on a limited 235U data set. De-­convolution methods for determining fissile fractions were developed and tested on the experimental data. The use of high count-­rate LaBr3 detectors was investigated as a potential alternative to HPGe detectors. Modeling capabilities were added to an existing framework and codes were adapted as needed for analyzing experiments and assessing application-­specific assay concepts. A de-­convolution analysis of the delayed gamma-­ray response spectra modeled for spent fuel assemblies was performed using the same method that was applied to the experimental spectra.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Fusion Energy Sciences (FES)
OSTI ID:
1236370
Report Number(s):
LBNL-184622; ir:184622; TRN: US1600261
Country of Publication:
United States
Language:
English