skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Improved Large Aperture Collector Manufacturing

Technical Report ·
DOI:https://doi.org/10.2172/1229553· OSTI ID:1229553
 [1];  [1]
  1. Abengoa Solar LLC, Lakewood, CO (United States)

The parabolic trough is the most established CSP technology and carries a long history of design experimentation dating back to the 1970’s. This has led to relatively standardized collector architectures, a maturing global supply chain, and a fairly uniform cost reduction strategy. Abengoa has deployed more than 1,500MWe of CSP troughs across several countries and has built and tested full-scale prototypes of many R&D concepts. The latest trough R&D efforts involved efforts to internalize non-CSP industry experience including a preliminary DFMA principles review done with Boothroyd Dewhurst, a construction literature review by the Arizona State University School of Construction Management, and two more focused manufacturing engineering subcontracts done by Ricardo Inc. and the nonprofit Edison Welding Institute. The first two studies highlighted strong opportunities in lowering part count, standardizing components and fasteners, developing modular designs to support prefabrication and automation, and devising simple, error-proof manual assembly methods. These principles have delivered major new cost savings in otherwise “mature” products in analogous industries like automotive, truck trailer manufacture, metal building fabrication, and shipbuilding. For this reason, they were core in the design development of the SpaceTube® collector, and arguably key to its early successes. The latter two studies were applied specifically to the first-generation SpaceTube® design and were important in setting the direction of the present SolarMat project. These studies developed a methodology to analyze the costs of manufacture and assembly, and identify new tooling concepts for more efficient manufacture. Among the main opportunities identified in these studies were the automated mirror arm manufacturing concept and the need for a less infrastructure-intensive assembly line, both of which now form central pillars of the SolarMat project strategy. These new designs will be supported by new technology in the area of quality control inspection, in which state of the art photogrammetry and laser CMM inspection methods will be used to qualify parts and assemblies, and in which the recently-developed Absorber Reflection Method will enable in-line quality control inspection of modules produced by the new high-rate production line.

Research Organization:
Abengoa Solar LLC, Lakewood, CO (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Solar Energy Technologies Office
DOE Contract Number:
EE0006357
OSTI ID:
1229553
Report Number(s):
DOE-ABENGOA-6357
Country of Publication:
United States
Language:
English