skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

Journal Article · · eLife
 [1];  [1];  [1];  [2];  [3];  [3];  [1];  [1]
  1. Standard Univ., Stanford, CA (United States). Dept. of Molecular and Cellular Physiology.
  2. Janelia Research Campus, Ashburn, VA (United States)
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as the resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
Grant/Contract Number:
AC02-05CH11231
OSTI ID:
1200901
Journal Information:
eLife, Vol. 4, Issue e05421; ISSN 2050-084X
Publisher:
eLife Sciences Publications, Ltd.Copyright Statement
Country of Publication:
United States
Language:
English

Similar Records

Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals
Journal Article · Tue Mar 17 00:00:00 EDT 2015 · eLife · OSTI ID:1200901

Strategies for sample delivery for femtosecond crystallography
Journal Article · Fri Feb 01 00:00:00 EST 2019 · Acta Crystallographica. Section D. Structural Biology · OSTI ID:1200901

Strategies for sample delivery for femtosecond crystallography
Journal Article · Tue Feb 19 00:00:00 EST 2019 · Acta Crystallographica. Section D. Structural Biology · OSTI ID:1200901

Related Subjects