skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nuclear Energy Knowledge and Validation Center (NEKVaC) Needs Workshop Summary Report

Abstract

The Department of Energy (DOE) has made significant progress developing simulation tools to predict the behavior of nuclear systems with greater accuracy and of increasing our capability to predict the behavior of these systems outside of the standard range of applications. These analytical tools require a more complex array of validation tests to accurately simulate the physics and multiple length and time scales. Results from modern simulations will allow experiment designers to narrow the range of conditions needed to bound system behavior and to optimize the deployment of instrumentation to limit the breadth and cost of the campaign. Modern validation, verification and uncertainty quantification (VVUQ) techniques enable analysts to extract information from experiments in a systematic manner and provide the users with a quantified uncertainty estimate. Unfortunately, the capability to perform experiments that would enable taking full advantage of the formalisms of these modern codes has progressed relatively little (with some notable exceptions in fuels and thermal-hydraulics); the majority of the experimental data available today is the "historic" data accumulated over the last decades of nuclear systems R&D. A validated code-model is a tool for users. An unvalidated code-model is useful for code developers to gain understanding, publish research results,more » attract funding, etc. As nuclear analysis codes have become more sophisticated, so have the measurement and validation methods and the challenges that confront them. A successful yet cost-effective validation effort requires expertise possessed only by a few, resources possessed only by the well-capitalized (or a willing collective), and a clear, well-defined objective (validating a code that is developed to satisfy the need(s) of an actual user). To that end, the Idaho National Laboratory established the Nuclear Energy Knowledge and Validation Center to address the challenges of modern code validation and to manage the knowledge from past, current, and future experimental campaigns. By pulling together the best minds involved in code development, experiment design, and validation to establish and disseminate best practices and new techniques, the Nuclear Energy Knowledge and Validation Center (NEKVaC or the ‘Center’) will be a resource for industry, DOE Programs, and academia validation efforts.« less

Authors:
 [1]
  1. Idaho National Lab. (INL), Idaho Falls, ID (United States)
Publication Date:
Research Org.:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Org.:
USDOE Office of Nuclear Energy (NE)
OSTI Identifier:
1183501
Report Number(s):
INL/EXT-15-34683
DOE Contract Number:  
AC07-05ID14517
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; Department of Energy (DOE); Nuclear Energy Knowledge and Validation Center (NE; validation, verification and uncertainty quantific

Citation Formats

Gougar, Hans. Nuclear Energy Knowledge and Validation Center (NEKVaC) Needs Workshop Summary Report. United States: N. p., 2015. Web. doi:10.2172/1183501.
Gougar, Hans. Nuclear Energy Knowledge and Validation Center (NEKVaC) Needs Workshop Summary Report. United States. https://doi.org/10.2172/1183501
Gougar, Hans. 2015. "Nuclear Energy Knowledge and Validation Center (NEKVaC) Needs Workshop Summary Report". United States. https://doi.org/10.2172/1183501. https://www.osti.gov/servlets/purl/1183501.
@article{osti_1183501,
title = {Nuclear Energy Knowledge and Validation Center (NEKVaC) Needs Workshop Summary Report},
author = {Gougar, Hans},
abstractNote = {The Department of Energy (DOE) has made significant progress developing simulation tools to predict the behavior of nuclear systems with greater accuracy and of increasing our capability to predict the behavior of these systems outside of the standard range of applications. These analytical tools require a more complex array of validation tests to accurately simulate the physics and multiple length and time scales. Results from modern simulations will allow experiment designers to narrow the range of conditions needed to bound system behavior and to optimize the deployment of instrumentation to limit the breadth and cost of the campaign. Modern validation, verification and uncertainty quantification (VVUQ) techniques enable analysts to extract information from experiments in a systematic manner and provide the users with a quantified uncertainty estimate. Unfortunately, the capability to perform experiments that would enable taking full advantage of the formalisms of these modern codes has progressed relatively little (with some notable exceptions in fuels and thermal-hydraulics); the majority of the experimental data available today is the "historic" data accumulated over the last decades of nuclear systems R&D. A validated code-model is a tool for users. An unvalidated code-model is useful for code developers to gain understanding, publish research results, attract funding, etc. As nuclear analysis codes have become more sophisticated, so have the measurement and validation methods and the challenges that confront them. A successful yet cost-effective validation effort requires expertise possessed only by a few, resources possessed only by the well-capitalized (or a willing collective), and a clear, well-defined objective (validating a code that is developed to satisfy the need(s) of an actual user). To that end, the Idaho National Laboratory established the Nuclear Energy Knowledge and Validation Center to address the challenges of modern code validation and to manage the knowledge from past, current, and future experimental campaigns. By pulling together the best minds involved in code development, experiment design, and validation to establish and disseminate best practices and new techniques, the Nuclear Energy Knowledge and Validation Center (NEKVaC or the ‘Center’) will be a resource for industry, DOE Programs, and academia validation efforts.},
doi = {10.2172/1183501},
url = {https://www.osti.gov/biblio/1183501}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Sun Feb 01 00:00:00 EST 2015},
month = {Sun Feb 01 00:00:00 EST 2015}
}