skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Computational fluid dynamic analysis of a High-Velocity Oxygen-Fuel (HVOF) thermal spray torch

Conference ·
OSTI ID:112932
; ;  [1];  [2]
  1. Sandia National Labs., Albuquerque, NM (United States)
  2. Ktech Corp., Albuquerque, NM (United States)

The gas dynamics of a High-Velocity Oxygen-Fuel (HVOF) torch are analyzed using computational fluid dynamics (CFD) techniques. The thermal spray device analyzed is similar to a Metco Diamond Jet torch with powder feed. The injection nozzle is assumed to be axisymmetric with premixed fuel and oxygen fed from an annulus, and air cooling injected along the interior surface of the aircap. The aircap, a cronically converging nozzle, achieves choked flow conditions at the exit and a supersonic, under-expanded jet develops externally. Finite difference equations for mass, momentum, and energy conservation are solved for the gas dynamics. The combustion process is modeled using a single-step and a 12-step quasi-global finite-rate chemistry model with dissociation of the gas and a total of nine species. Turbulent flow inside the aircap and in the free-jet decay is modeled using a two-equation k-{epsilon} model. An iterative, implicit, finite volume numerical method is used to solve the gas dynamic equations inside and outside the torch . The CFD results are compared with recent experimental measurements of pressure inside the HVOF aircap. Comparisons are made for two flow rates of premixed fuel and oxygen and air cooling. This paper presents the first published comparisons of CFD predictions and experimental measurements for HVOF tbermal spraying.

Research Organization:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC04-94AL85000
OSTI ID:
112932
Report Number(s):
SAND-95-0009C; CONF-9509182-5; ON: DE95017886
Resource Relation:
Conference: 1995 National thermal spray conference, Houston, TX (United States), 11-15 Sep 1995; Other Information: PBD: [1995]
Country of Publication:
United States
Language:
English