skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: 90Sr liquid scintillation urine analysis utilizing different approaches for tracer recovery.

Technical Report ·
DOI:https://doi.org/10.2172/1097198· OSTI ID:1097198

90Sr is one of the isotopes most commonly produced by nuclear fission. This medium lived isotope presents serious challenges to radiation workers, the environment, and following a nuclear event, the general public. Methods of identifying this nuclide have been in existence for a number of years (e.g. Horwitz, E.P. [1], Maxwell, S.L.[2], EPA 905.0 [3]) which are time consuming, requiring a month or more for full analysis. This time frame is unacceptable in the present security environment. It is therefore important to have a dependable and rapid method for the determination of Sr. The purposes of this study are to reduce analysis time to less than half a day by utilizing a single method of radiation measurement while continuing to yield precise results. This paper presents findings on three methods that can meet this criteria; (1) stable Sr carrier, (2) 85Sr by gamma spectroscopy, and (3) 85Sr by LSC. Two methods of analyzing and calculating the 85Sr tracer recovery were investigated (gamma spectroscopy and a low energy window-Sr85LEBAB by LSC) as well as the use of two different types of Sr tracer (85Sr and stable Sr carrier). Three separate stock blank urine samples were spiked with various activity levels of 239Pu, 137Cs, 90Sr /90Y to determine the effectiveness of the Eichrome Sr-spec resin 2mL extractive columns. The objective was to compare the recoveries of 85Sr versus a stable strontium carrier, attempt to compare the rate at which samples can be processed by evaluating evaporation, neutralization, and removing the use of another instrument (gamma spectrometer) by using the LSC spectrometer to obtain 85Sr recovery. It was found that when using a calibration curve comprised of a different cocktail and a non-optimum discriminator setting reasonable results (bias of « 25%) were achieved. The results from spiked samples containing 85Sr demonstrated that a higher recovery is obtained when using gamma spectroscopy (89-95%) than when using the LEB window from LSC (120-470%). The high recovery for 85Sr by LSC analysis may be due to the interference/cross talk from the alpha region since alpha counts were observed in all sample sets. After further investigation it was determined that the alpha counts were due to 239Pu breakthrough on the Sr-spec column. This requires further development to purify the Sr before an accurate tracer recovery determination can be made. Sample preparation times varied and ranged from 4-6 hours depending on the specific sample preparation process. The results from the spiked samples containing stable strontium nitrate Sr(NO3)2 carrier demonstrate that gravimetric analysis yields the most consistent high recoveries (97-101%) when evaporation is carefully performed. Since this method did not have a variation on the tracer recovery method, the samples were counted in 1) LEB/Alpha/Beta mode optimized for Sr-90, 2) DPM for Sr-90, and 3) general LEB/Alpha/Beta mode. The results (from the known) ranged from 79-104%, 107-177%, and 85-89% for 1, 2, and 3 respectively. Counting the prepared samples in a generic low energy beta/alpha/beta protocol yielded more accurate and consistent results and also yielded the shortest sample preparation turn-around-time of 3.5 hours.

Research Organization:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Organization:
USDOE National Nuclear Security Administration (NNSA)
DOE Contract Number:
AC04-94AL85000
OSTI ID:
1097198
Report Number(s):
SAND2010-5878; 476314
Country of Publication:
United States
Language:
English