skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Long-Term Instrumentation, Information, and Control Systems (II&C) Modernization Future Vision and Strategy

Abstract

Life extension beyond 60 years for the U.S operating nuclear fleet requires that instrumentation and control (I&C) systems be upgraded to address aging and reliability concerns. It is impractical for the legacy systems based on 1970’s vintage technology operate over this extended time period. Indeed, utilities have successfully engaged in such replacements when dictated by these operational concerns. However, the replacements have been approached in a like-for-like manner, meaning that they do not take advantage of the inherent capabilities of digital technology to improve business functions. And so, the improvement in I&C system performance has not translated to bottom-line performance improvement for the fleet. Therefore, wide-scale modernization of the legacy I&C systems could prove to be cost-prohibitive unless the technology is implemented in a manner to enable significant business innovation as a means of off-setting the cost of upgrades. A Future Vision of a transformed nuclear plant operating model based on an integrated digital environment has been developed as part of the Advanced Instrumentation, Information, and Control (II&C) research pathway, under the Light Water Reactor (LWR) Sustainability Program. This is a research and development program sponsored by the U.S. Department of Energy (DOE), performed in close collaboration with the nuclearmore » utility industry, to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. DOE’s program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy security and environmental security . The Advanced II&C research pathway is being conducted by the Idaho National Laboratory (INL). The Future Vision is based on a digital architecture that encompasses all aspects of plant operations and support, integrating plant systems, plant work processes, and plant workers in a seamless digital environment to enhance nuclear safety, increase productivity, and improve overall plant performance. The long-term goal is to transform the operating model of the nuclear power plants (NPP)s from one that is highly reliant on a large staff performing mostly manual activities to an operating model based on highly integrated technology with a smaller staff. This digital transformation is critical to addressing an array of issues facing the plants, including aging of legacy analog systems, potential shortage of technical workers, ever-increasing expectations for nuclear safety improvement, and relentless pressure to reduce cost. The Future Vision is based on research is being conducted in the following major areas of plant function: 1. Highly integrated control rooms 2. Highly automated plant 3. Integrated operations 4. Human performance improvement for field workers 5. Outage safety and efficiency. Pilot projects will be conducted in each of these areas as the means for industry to collectively integrate these new technologies into nuclear plant work activities. The pilot projects introduce new digital technologies into the nuclear plant operating environment at host operating plants to demonstrate and validate them for production usage. In turn, the pilot project technologies serve as the stepping stones to the eventual seamless digital environment as described in the Future Vision.« less

Authors:
;
Publication Date:
Research Org.:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Org.:
DOE - NE
OSTI Identifier:
1082393
Report Number(s):
INL/EXT-11-24154
DOE Contract Number:  
DE-AC07-05ID14517
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
99 GENERAL AND MISCELLANEOUS; Control Room Modernization Strategy; instrumentation, information, and control; Light Water Reactors Sustainability; nuclear power plants

Citation Formats

Thomas, Kenneth, and Hallbert, Bruce. Long-Term Instrumentation, Information, and Control Systems (II&C) Modernization Future Vision and Strategy. United States: N. p., 2013. Web. doi:10.2172/1082393.
Thomas, Kenneth, & Hallbert, Bruce. Long-Term Instrumentation, Information, and Control Systems (II&C) Modernization Future Vision and Strategy. United States. https://doi.org/10.2172/1082393
Thomas, Kenneth, and Hallbert, Bruce. 2013. "Long-Term Instrumentation, Information, and Control Systems (II&C) Modernization Future Vision and Strategy". United States. https://doi.org/10.2172/1082393. https://www.osti.gov/servlets/purl/1082393.
@article{osti_1082393,
title = {Long-Term Instrumentation, Information, and Control Systems (II&C) Modernization Future Vision and Strategy},
author = {Thomas, Kenneth and Hallbert, Bruce},
abstractNote = {Life extension beyond 60 years for the U.S operating nuclear fleet requires that instrumentation and control (I&C) systems be upgraded to address aging and reliability concerns. It is impractical for the legacy systems based on 1970’s vintage technology operate over this extended time period. Indeed, utilities have successfully engaged in such replacements when dictated by these operational concerns. However, the replacements have been approached in a like-for-like manner, meaning that they do not take advantage of the inherent capabilities of digital technology to improve business functions. And so, the improvement in I&C system performance has not translated to bottom-line performance improvement for the fleet. Therefore, wide-scale modernization of the legacy I&C systems could prove to be cost-prohibitive unless the technology is implemented in a manner to enable significant business innovation as a means of off-setting the cost of upgrades. A Future Vision of a transformed nuclear plant operating model based on an integrated digital environment has been developed as part of the Advanced Instrumentation, Information, and Control (II&C) research pathway, under the Light Water Reactor (LWR) Sustainability Program. This is a research and development program sponsored by the U.S. Department of Energy (DOE), performed in close collaboration with the nuclear utility industry, to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. DOE’s program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy security and environmental security . The Advanced II&C research pathway is being conducted by the Idaho National Laboratory (INL). The Future Vision is based on a digital architecture that encompasses all aspects of plant operations and support, integrating plant systems, plant work processes, and plant workers in a seamless digital environment to enhance nuclear safety, increase productivity, and improve overall plant performance. The long-term goal is to transform the operating model of the nuclear power plants (NPP)s from one that is highly reliant on a large staff performing mostly manual activities to an operating model based on highly integrated technology with a smaller staff. This digital transformation is critical to addressing an array of issues facing the plants, including aging of legacy analog systems, potential shortage of technical workers, ever-increasing expectations for nuclear safety improvement, and relentless pressure to reduce cost. The Future Vision is based on research is being conducted in the following major areas of plant function: 1. Highly integrated control rooms 2. Highly automated plant 3. Integrated operations 4. Human performance improvement for field workers 5. Outage safety and efficiency. Pilot projects will be conducted in each of these areas as the means for industry to collectively integrate these new technologies into nuclear plant work activities. The pilot projects introduce new digital technologies into the nuclear plant operating environment at host operating plants to demonstrate and validate them for production usage. In turn, the pilot project technologies serve as the stepping stones to the eventual seamless digital environment as described in the Future Vision.},
doi = {10.2172/1082393},
url = {https://www.osti.gov/biblio/1082393}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Feb 01 00:00:00 EST 2013},
month = {Fri Feb 01 00:00:00 EST 2013}
}