skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Transported PDF Modeling of Nonpremixed Turbulent CO/H-2/N-2 Jet Flames

Journal Article · · Combustion Science and Technology

Turbulent CO/H{sub 2}/N{sub 2} (“syngas”) flames are simulated using a transported composition probability density function (PDF) method. A consistent hybrid Lagrangian particle/Eulerian mesh algorithm is used to solve the modeled PDF transport equation. The model includes standard k–ϵ turbulence, gradient transport for scalars, and Euclidean minimum spanning tree (EMST) mixing. Sensitivities of model results to variations in the turbulence model, the treatment of radiation heat transfer, the choice of chemical mechanism, and the PDF mixing model are explored. A baseline model reproduces the measured mean and rms temperature, major species, and minor species profiles reasonably well, and captures the scaling that is observed in the experiments. Both our results and the literature suggest that further improvements can be realized with adjustments in the turbulence model, the radiation heat transfer model, and the chemical mechanism. Although radiation effects are relatively small in these flames, consideration of radiation is important for accurate NO prediction. Chemical mechanisms that have been developed specifically for fuels with high concentrations of CO and H{sub 2} perform better than a methane mechanism that was not designed for this purpose. It is important to account explicitly for turbulence–chemistry interactions, although the details of the mixing model do not make a large difference in the results, within reasonable limits.

Research Organization:
National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States). In-house Research
Sponsoring Organization:
USDOE Office of Fossil Energy (FE)
Contributing Organization:
National Energy Technology Laboratory; The Pennsylvania State University
DOE Contract Number:
DE-FE0004000
OSTI ID:
1081557
Report Number(s):
TPR-3735
Journal Information:
Combustion Science and Technology, Vol. 184, Issue 5; ISSN 0010--2202
Country of Publication:
United States
Language:
English