skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SBWR PCCS vent phenomena and suppression pool mixing

Conference ·
OSTI ID:107775
 [1];  [2]
  1. Thermal-Hydraulics Lab., Paul Scherrer Institute, Villigen (Switzerland)
  2. Nuclear Engineering Lab., Swiss Federal Institute of Technology, Zurich (Switzerland)

The most important phenomena influencing the effectiveness of the pressure suppression capability of the water pool within the Wetwell compartment of the SBWR Containment, during the period of Passive Containment Cooling System (PCCS) venting, have been critically reviewed. In addition, calculations have been carried-out to determine the condensation of the vented steam and the distribution of the energy deposited in the liquid pool. It has been found that a large contribution to the vapour suppression is due to condensation inside the vent pipe. The condensation rate of the steam inside the bubbles, produced at the vent exit, during their rise to the surface, may however be rather low, because of the large size bubbles. This can lead to vapour channelling to the Wetwell gas space. The above comments are likely to be ameliorated if the vent exit is a distributed source or sparger. Due to the large water flow rates within the {open_quotes}bubbly two-phase plume{close_quotes} generated by the gas injection, the water in the pool above the vent exit is likely to be heated nearly isothermally (perfect mixing). The effect of the suppression pool walls would be to enhance the recirculation and, consequently to promote mixing. The large size of the bubbles therein and of the walls on pool mixing are the most severe difficulties in extrapolating the results from scaled experiments to prototypical conditions.

Research Organization:
US Nuclear Regulatory Commission (NRC), Washington, DC (United States). Div. of Systems Technology; American Nuclear Society (ANS), La Grange Park, IL (United States); American Institute of Chemical Engineers, New York, NY (United States); American Society of Mechanical Engineers (ASME), New York, NY (United States); Canadian Nuclear Society, Toronto, ON (Canada); European Nuclear Society (ENS), Bern (Switzerland); Atomic Energy Society of Japan, Tokyo (Japan); Japan Society of Multiphase Flow, Kyoto (Japan)
OSTI ID:
107775
Report Number(s):
NUREG/CP-0142-Vol.2; CONF-950904-Vol.2; ON: TI95017078; CNN: Contract Nr. 514; TRN: 95:021397
Resource Relation:
Conference: 7. international topical meeting on nuclear reactor thermal-hydraulics (Nureth-7), Saratoga Springs, NY (United States), 10-15 Sep 1995; Other Information: PBD: Sep 1995; Related Information: Is Part Of Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics NURETH-7. Volume 2, Sessions 6-11; Block, R.C.; Feiner, F. [comps.] [American Nuclear Society, La Grange Park, IL (United States)]; PB: 795 p.
Country of Publication:
United States
Language:
English