skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evaluation of a main steam line break with induced, multiple tube ruptures: A comparison of NUREG 1477 (Draft) and transient methodologies Palo Verde Nuclear Generating Station

Technical Report ·
DOI:https://doi.org/10.2172/107762· OSTI ID:107762

This paper presents the approach taken to analyze the radiological consequences of a postulated main steam line break event, with one or more tube ruptures, for the Palo Verde Nuclear Generating Station. The analysis was required to support the restart of PVNGS Unit 2 following the steam generator tube rupture event on March 14, 1993 and to justify continued operation of Units 1 and 3. During the post-event evaluation, the NRC expressed concern that Unit 2 could have been operating with degraded tubes and that similar conditions could exist in Units 1 and 3. The NRC therefore directed that a safety assessment be performed to evaluate a worst case scenario in which a non-isolable main steam line break occurs inducing one or more tube failures in the faulted steam generator. This assessment was to use the generic approach described in NUREG 1477, Voltage-Based Interim Plugging Criteria for Steam Generator Tubes - Task Group Report. An analysis based on the NUREG approach was performed but produced unacceptable results for off-site and control room thyroid doses. The NUREG methodology, however, does not account for plant thermal-hydraulic transient effects, system performance, or operator actions which could be credited to mitigate dose consequences. To deal with these issues, a more detailed analysis methodology was developed using a modified version of the Combustion Engineering Plant Analysis Code, which examines the dose consequences for a main steam line break transient with induced tube failures for a spectrum equivalent to 1 to 4 double ended guillotine U-tube breaks. By incorporating transient plant system responses and operator actions, the analysis demonstrates that the off-site and control room does consequences for a MSLBGTR can be reduced to acceptable limits. This analysis, in combination with other corrective and recovery actions, provided sufficient justification for continued operation of PVNGS Units 1 and 3, and for the subsequent restart of Unit 2.

Research Organization:
US Nuclear Regulatory Commission (NRC), Washington, DC (United States). Div. of Systems Technology; American Nuclear Society (ANS), La Grange Park, IL (United States); American Institute of Chemical Engineers, New York, NY (United States); American Society of Mechanical Engineers (ASME), New York, NY (United States); Canadian Nuclear Society, Toronto, ON (Canada); European Nuclear Society (ENS), Bern (Switzerland); Atomic Energy Society of Japan, Tokyo (Japan); Japan Society of Multiphase Flow, Kyoto (Japan)
OSTI ID:
107762
Report Number(s):
NUREG/CP-0142-Vol.2; CONF-950904-Vol.2; ON: TI95017078; TRN: 95:021384
Resource Relation:
Conference: 7. international topical meeting on nuclear reactor thermal-hydraulics (Nureth-7), Saratoga Springs, NY (United States), 10-15 Sep 1995; Other Information: PBD: Sep 1995; Related Information: Is Part Of Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics NURETH-7. Volume 2, Sessions 6-11; Block, R.C.; Feiner, F. [comps.] [American Nuclear Society, La Grange Park, IL (United States)]; PB: 795 p.
Country of Publication:
United States
Language:
English