skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Advances in fabrication of Ag-clad Bi-2223 superconductors.

Conference ·
OSTI ID:10712

Powder-in-tube (PIT) processing was used to fabricate multifilamentary Ag-clad Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub y} (Bi-2223) superconductors for various electric power applications. Enhancements in the transport current properties of long lengths of multifilament tapes were achieved by increasing the packing density of the precursor powder, improving the mechanical deformation, and adjusting the cooling rate. The dependence of the critical current density on magnetic field and temperature for the optimally processed tapes was measured. J{sub c} was greater than 10{sup 4} (A/cm{sup 2}) at 20 K for magnetic field up to 3 T and parallel to the c-axis which is of interest for use in refrigerator coded magnets. An attempt was made to combine the good alignment of Bi-2223 grains in Ag-sheathed superconducting tapes to obtain high J{sub c} values at high temperature and low field, and good intrinsic pinning of YBa{sub 2}Cu{sub 3}O{sub 7{minus}d} (Y-123) thin film to maintain high J{sub c} values in high fields. A new composite multifilament tape was fabricated such that the central part contained Bi-2223 filaments, with the primary function of conducting the transport current. The central Bi-2223 filaments were surrounded by Y-123 thin film to shield the applied magnetic field and protect the Bi-2223 filaments. The J{sub c} values of the composite tape were better than those of an uncoated tape. In the case of 77 K applications, an I{sub c} of about 60 A was obtained in a 150 m long tape and zero applied magnetic field. In-situ strain characteristics of the mono- and multifilament tapes were conducted.

Research Organization:
Argonne National Lab., IL (US)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
W-31109-ENG-38
OSTI ID:
10712
Report Number(s):
ANL/ET/CP-96010; TRN: AH200127%%292
Resource Relation:
Conference: 1998 Applied Superconductivity Conference, Palm Desert, CA (US), 09/13/1998--09/18/1998; Other Information: PBD: 4 Sep 1998
Country of Publication:
United States
Language:
English