skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Corrosion Evaluation of RERTR Uranium Molybdenum Fuel

Abstract

As part of the National Nuclear Security Agency (NNSA) mandate to replace the use of highly enriched uranium (HEU) fuel for low enriched uranium (LEU) fuel, research into the development of LEU fuel for research reactors has been active since the late 1970’s. Originally referred to as the Reduced Enrichment for Research and Test Reactor (RERTR) program the new effort named Global Threat Reduction Initiative (GTRI) is nearing the goal of replacing the standard aluminum clad dispersion highly enriched uranium aluminide fuel with a new LEU fuel. The five domestic high performance research reactors undergoing this conversion are High Flux Isotope reactor (HFIR), Advanced Test Reactor (ATR), National Institute of Standards and Technology (NIST) Reactor, Missouri University Research Reactor (MURR) and the Massachusetts Institute of Technology Reactor II (MITR-II). The design of these reactors requires a higher neutron flux than other international research reactors, which to this point has posed unique challenges in the design and development of the new mandated LEU fuel. The new design utilizes a monolithic fuel configuration in order to obtain sufficient 235U within the LEU stoichoimetry to maintain the fission reaction within the domestic test reactors. The change from uranium aluminide dispersion fuel type tomore » uranium molybdenum (UMo) monolithic configuration requires examination of possible corrosion issues associated with the new fuel meat. A focused analysis of the UMo fuel under potential corrosion conditions, within the ATR and under aqueous storage indicates a slow and predictable corrosion rate. Additional corrosion testing is recommended for the highest burn-up fuels to confirm observed corrosion rate trends. This corrosion analysis will focus only on the UMo fuel and will address corrosion of ancillary components such as cladding only in terms of how it affects the fuel. The calculations and corrosion scenarios are weighted with a conservative bias to provide additional confidence with the results. The actual corrosion rates of UMo fuel is very likely to be lower than assumed within this report which can be confirmed with additional testing.« less

Authors:
Publication Date:
Research Org.:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Org.:
DOE - NA
OSTI Identifier:
1064056
Report Number(s):
INL/EXT-12-27280
TRN: US1300067
DOE Contract Number:  
DE-AC07-05ID14517
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; Corrosion; Evaluation; Fuel; Molybdenum; RERTR; Uranium

Citation Formats

Wertsching, A K. Corrosion Evaluation of RERTR Uranium Molybdenum Fuel. United States: N. p., 2012. Web. doi:10.2172/1064056.
Wertsching, A K. Corrosion Evaluation of RERTR Uranium Molybdenum Fuel. United States. https://doi.org/10.2172/1064056
Wertsching, A K. 2012. "Corrosion Evaluation of RERTR Uranium Molybdenum Fuel". United States. https://doi.org/10.2172/1064056. https://www.osti.gov/servlets/purl/1064056.
@article{osti_1064056,
title = {Corrosion Evaluation of RERTR Uranium Molybdenum Fuel},
author = {Wertsching, A K},
abstractNote = {As part of the National Nuclear Security Agency (NNSA) mandate to replace the use of highly enriched uranium (HEU) fuel for low enriched uranium (LEU) fuel, research into the development of LEU fuel for research reactors has been active since the late 1970’s. Originally referred to as the Reduced Enrichment for Research and Test Reactor (RERTR) program the new effort named Global Threat Reduction Initiative (GTRI) is nearing the goal of replacing the standard aluminum clad dispersion highly enriched uranium aluminide fuel with a new LEU fuel. The five domestic high performance research reactors undergoing this conversion are High Flux Isotope reactor (HFIR), Advanced Test Reactor (ATR), National Institute of Standards and Technology (NIST) Reactor, Missouri University Research Reactor (MURR) and the Massachusetts Institute of Technology Reactor II (MITR-II). The design of these reactors requires a higher neutron flux than other international research reactors, which to this point has posed unique challenges in the design and development of the new mandated LEU fuel. The new design utilizes a monolithic fuel configuration in order to obtain sufficient 235U within the LEU stoichoimetry to maintain the fission reaction within the domestic test reactors. The change from uranium aluminide dispersion fuel type to uranium molybdenum (UMo) monolithic configuration requires examination of possible corrosion issues associated with the new fuel meat. A focused analysis of the UMo fuel under potential corrosion conditions, within the ATR and under aqueous storage indicates a slow and predictable corrosion rate. Additional corrosion testing is recommended for the highest burn-up fuels to confirm observed corrosion rate trends. This corrosion analysis will focus only on the UMo fuel and will address corrosion of ancillary components such as cladding only in terms of how it affects the fuel. The calculations and corrosion scenarios are weighted with a conservative bias to provide additional confidence with the results. The actual corrosion rates of UMo fuel is very likely to be lower than assumed within this report which can be confirmed with additional testing.},
doi = {10.2172/1064056},
url = {https://www.osti.gov/biblio/1064056}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Sat Sep 01 00:00:00 EDT 2012},
month = {Sat Sep 01 00:00:00 EDT 2012}
}