skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Small-Scale Spray Releases: Orifice Plugging Test Results

Abstract

One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities, is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations published in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials present in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty introduced by extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches in which the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breachesmore » and fluids, specifically including sprays from larger breaches with slurries where data from the literature are largely absent. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine the aerosol release fractions and aerosol generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents (AFA) was assessed with most of the simulants. Orifices included round holes and rectangular slots. Much of the testing was conducted at pressures of 200 and 380 psi, but some tests were conducted at 100 psi. Testing the largest postulated breaches was deemed impractical because of the large size of some of the WTP equipment. The purpose of the study described in this report is to provide experimental data for the first key technical area, potential plugging of small breaches, by performing small-scale tests with a range of orifice sizes and orientations representative of the WTP conditions. The simulants used were chosen to represent the range of process stream properties in the WTP. Testing conducted after the plugging tests in the small- and large-scale test stands addresses the second key technical area, aerosol generation. The results of the small-scale aerosol generation tests are included in Mahoney et al. 2012. The area of spray generation from large breaches is covered by large-scale testing in Schonewill et al. 2012.« less

Authors:
; ; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1059209
Report Number(s):
PNNL-21361
830403000
DOE Contract Number:  
AC05-76RL01830
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
Spray release; orifice plugging; small-scale testing

Citation Formats

Mahoney, Lenna A, Gauglitz, Phillip A, Blanchard, Jeremy, Kimura, Marcia L, and Kurath, Dean E. Small-Scale Spray Releases: Orifice Plugging Test Results. United States: N. p., 2012. Web. doi:10.2172/1059209.
Mahoney, Lenna A, Gauglitz, Phillip A, Blanchard, Jeremy, Kimura, Marcia L, & Kurath, Dean E. Small-Scale Spray Releases: Orifice Plugging Test Results. United States. https://doi.org/10.2172/1059209
Mahoney, Lenna A, Gauglitz, Phillip A, Blanchard, Jeremy, Kimura, Marcia L, and Kurath, Dean E. 2012. "Small-Scale Spray Releases: Orifice Plugging Test Results". United States. https://doi.org/10.2172/1059209. https://www.osti.gov/servlets/purl/1059209.
@article{osti_1059209,
title = {Small-Scale Spray Releases: Orifice Plugging Test Results},
author = {Mahoney, Lenna A and Gauglitz, Phillip A and Blanchard, Jeremy and Kimura, Marcia L and Kurath, Dean E},
abstractNote = {One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities, is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations published in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials present in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty introduced by extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches in which the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are largely absent. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine the aerosol release fractions and aerosol generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents (AFA) was assessed with most of the simulants. Orifices included round holes and rectangular slots. Much of the testing was conducted at pressures of 200 and 380 psi, but some tests were conducted at 100 psi. Testing the largest postulated breaches was deemed impractical because of the large size of some of the WTP equipment. The purpose of the study described in this report is to provide experimental data for the first key technical area, potential plugging of small breaches, by performing small-scale tests with a range of orifice sizes and orientations representative of the WTP conditions. The simulants used were chosen to represent the range of process stream properties in the WTP. Testing conducted after the plugging tests in the small- and large-scale test stands addresses the second key technical area, aerosol generation. The results of the small-scale aerosol generation tests are included in Mahoney et al. 2012. The area of spray generation from large breaches is covered by large-scale testing in Schonewill et al. 2012.},
doi = {10.2172/1059209},
url = {https://www.osti.gov/biblio/1059209}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Sat Sep 01 00:00:00 EDT 2012},
month = {Sat Sep 01 00:00:00 EDT 2012}
}