skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Recent Progress in the NSTX/NSTX-U Lithium Program and Prospects for Reactor-Relevant Liquid-Lithium Based Divertor Development

Conference · · IAEA
OSTI ID:1056358

Developing a reactor compatible divertor has been identified as a particularly challenging technology problem for magnetic confinement fusion. While tungsten has been identified as the most attractive solid divertor material, the NSTX/NSTX-U lithium (Li) program is investigating the viability of liquid lithium (LL) as a potential reactor compatible divertor plasma facing component (PFC) . In the near term, operation in NSTX-U is projected to provide reactor-like divertor heat loads < 40 MW/m^2 for 5 s. During the most recent NSTX campaign, ~ 0.85 kg of Li was evaporated onto the NSTX PFCs where a ~50% reduction in heat load on the Liquid Lithium Divertor (LLD) was observed, attributable to enhanced divertor bolometric radiation. This reduced divertor heat flux through radiation observed in the NSTX LLD experiment is consistent with the results from other lithium experiments and calculations. These results motivate an LL-based closed radiative divertor concept proposed here for NSTX-U and fusion reactors. With an LL coating, the Li is evaporated from the divertor strike point surface due to the intense heat. The evaporated Li is readily ionized by the plasma due to its low ionization energies, and the ionized Li ions can radiate strongly, resulting in a significant reduction in the divertor heat flux. Due to the rapid plasma transport in divertor plasma, the radiation values can be significantly enhanced up to ~ 11 MJ/cc of LL. This radiative process has the desired function of spreading the focused divertor heat load to the entire divertor chamber facilitating the divertor heat removal. The LL divertor surface can also provide a "sacrificial" surface to protect the substrate solid material from transient high heat flux such as the ones caused by the ELMs. The closed radiative LLD concept has the advantages of providing some degree of partition in terms of plasma disruption forces on the LL, Li particle divertor retention, and strong divertor pumping action from the Li-coated divertor chamber wall. By operating at a lower temperature than the first wall, the LLD can serve to purify the entire reactor chamber, as impurities generally migrate toward lower temperature Li-condensed surfaces. To maintain the LL purity, a closed LL loop system with a modest capacity (e.g., ~ 1 Liter/sec for ~ 1% level "impurities") is envisioned for a steady-state 1 GW-electric class fusion power plant.

Research Organization:
Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-ACO2-09CH11466
OSTI ID:
1056358
Report Number(s):
PPPL-4830
Journal Information:
IAEA, Conference: IAEA Conference, (September 2012)
Publisher:
IAEA (September 2012)
Country of Publication:
United States
Language:
English

Similar Records

Lithium As Plasma Facing Component for Magnetic Fusion Research
Technical Report · Mon Sep 10 00:00:00 EDT 2012 · OSTI ID:1056358

Liquid lithium applications for solving challenging fusion reactor issues and NSTX-U contributions
Journal Article · Fri Aug 05 00:00:00 EDT 2016 · Fusion Engineering and Design · OSTI ID:1056358

Predictive modeling of a lithium vapor box divertor in NSTX-U using SOLPS-ITER
Journal Article · Tue Jun 01 00:00:00 EDT 2021 · Nuclear Materials and Energy · OSTI ID:1056358