skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: PREDICTION METRICS FOR CHEMICAL DETECTION IN LONG-WAVE INFRARED HYPERSPECTRAL IMAGERY

Journal Article · · Journal of Undergraduate Research
OSTI ID:1052117

Natural and man-made chemical processes generate gaseous plumes that may be detected by hyperspectral imaging, which produces a matrix of spectra affected by the chemical constituents of the plume, the atmosphere, the bounding background surface and instrument noise. A physics-based model of observed radiance shows that high chemical absorbance and low background emissivity result in a larger chemical signature. Using simulated hyperspectral imagery, this study investigated two metrics which exploited this relationship. The objective was to explore how well the chosen metrics predicted when a chemical would be more easily detected when comparing one background type to another. The two predictor metrics correctly rank ordered the backgrounds for about 94% of the chemicals tested as compared to the background rank orders from Whitened Matched Filtering (a detection algorithm) of the simulated spectra. These results suggest that the metrics provide a reasonable summary of how the background emissivity and chemical absorbance interact to produce the at-sensor chemical signal. This study suggests that similarly effective predictors that account for more general physical conditions may be derived.

Research Organization:
DOESC (USDOE Office of Science (SC) (United States))
Sponsoring Organization:
USDOE Office of Science (SC)
OSTI ID:
1052117
Journal Information:
Journal of Undergraduate Research, Vol. 9
Country of Publication:
United States
Language:
English

Related Subjects