skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Novel Materials for cell Studies and harvesting

Conference ·
OSTI ID:1044104

Controlling cell growth on different surfaces is crucial for many applications. For instance after surgery, unspecific adhesion on exogenous materials can lead to fouling that may result in infections. On the other hand, fast attachment of tissue cells is pivotal for the healing process. Hence, specific regulation of cell adhesion to substrates is a significant task especially in the biomedical field. It has long been known that surface conditions like topology/roughness, wettability, charge, etc. are major factors in cell adhesion on various synthetic materials including Polytetrafluoroethylene, titanium or silicone. However, the literature is sparse on studies of cell growth on medical relevant substrates. We investigated the growth of different cells types on polyelectrolyte (PE) multilayers with and without lipid bilayers deposited and could observe confluence and multiplication of cells on both substrate types. Our neutron reflectometry studies of lipid bilayers deposited on polyelectrolyte multilayer demonstrates that the size of the water gap between the lipid bilayer and the PE covered substrate can be influenced by the environmental conditions, e.g. the pH of the surrounding medium. In principal, this 'floating' of a lipid bilayer can also be applied for growing monolayer of cells and detaching them by an environmental change. Such a fabrication would simplify cell growing and harvesting for various medical application, e.g. tissue engineering. Our approach for the fabrication of cellular monolayers that are easy to detach and transfer, creating free-floating sheets of cells also enables us to study those structures more conveniently and under in-situ conditions using neutron scattering.

Research Organization:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Organization:
DOE/LANL
DOE Contract Number:
AC52-06NA25396
OSTI ID:
1044104
Report Number(s):
LA-UR-12-22292; TRN: US201214%%307
Resource Relation:
Conference: ACNS ; 2012-06-24 - 2012-06-28 ; Washington, District Of Columbia, United States
Country of Publication:
United States
Language:
English