skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Towards understanding initiation reactions of explosives via ultrafast laser quantum control

Conference ·
OSTI ID:1043475

Optimal control can be utilized to control the initiation reaction of explosives, where time dependent phase shaped electric fields drive the chemical systems towards a desired state. For quantum controlled initiation (QCI) of explosives a pulse is created which seeks to achieve initiation by employing shaped ultraviolet light. QCI will enhance the understanding of energetic material reactions by yielding insight into the characteristics, such as critical 'hot spot' size and reaction dynamics, necessary for initiation. Quantum control experiments require the ability to: (1) phase and amplitude shape an ultrafast laser pulse, (2) measure the effect of pulse shape, and (3) optimize the desired outcome. Pulse shaping is performed with a 4-focal length dispersed fused silica acousto-optic modulator (AOM) at 400 nm in the ultraviolet (UV). Transient absorption spectroscopy is used to measure the pulse shape effects. Both global and local optimization search routines such as genetic algorithm, differential evolution, and downhill simplex are used to search for the optimal pulse shape. Hexanitroazobenzene (HNAB), Trinitroanaline (TNA) and Diaminoazozyfurazan (DAAF) are excited to the first electronic state with 400 nm light. Our initiation experiments are studying the effect of phase shaped 400 nm pulses on HNAB, TNA and DAAF. Novel transient absorption spectra for each material have been obtained and note worthy regions further investigated with single parameter control (second order spectral phase and energy). Many systems have simple intensity control such as that shown by DAAF. TNA and HNAB have spectral features that are not single parameter driven and are being further investigated with complex control.

Research Organization:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC52-06NA25396
OSTI ID:
1043475
Report Number(s):
LA-UR-10-08188; LA-UR-10-8188; TRN: US201214%%31
Resource Relation:
Conference: Pacifichem 2010 ; December 15, 2010 ; Honolulu, Hi
Country of Publication:
United States
Language:
English