skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Final Report for National Transport Code Collaboration PTRANSP

Technical Report ·
DOI:https://doi.org/10.2172/1043078· OSTI ID:1043078

PTRANSP, which is the predictive version of the TRANSP code, was developed in a collaborative effort involving the Princeton Plasma Physics Laboratory, General Atomics Corporation, Lawrence Livermore National Laboratory, and Lehigh University. The PTRANSP/TRANSP suite of codes is the premier integrated tokamak modeling software in the United States. A production service for PTRANSP/TRANSP simulations is maintained at the Princeton Plasma Physics Laboratory; the server has a simple command line client interface and is subscribed to by about 100 researchers from tokamak projects in the US, Europe, and Asia. This service produced nearly 13000 PTRANSP/TRANSP simulations in the four year period FY 2005 through FY 2008. Major archives of TRANSP results are maintained at PPPL, MIT, General Atomics, and JET. Recent utilization, counting experimental analysis simulations as well as predictive simulations, more than doubled from slightly over 2000 simulations per year in FY 2005 and FY 2006 to over 4300 simulations per year in FY 2007 and FY 2008. PTRANSP predictive simulations applied to ITER increased eight fold from 30 simulations per year in FY 2005 and FY 2006 to 240 simulations per year in FY 2007 and FY 2008, accounting for more than half of combined PTRANSP/TRANSP service CPU resource utilization in FY 2008. PTRANSP studies focused on ITER played a key role in journal articles. Examples of validation studies carried out for momentum transport in PTRANSP simulations were presented at the 2008 IAEA conference. The increase in number of PTRANSP simulations has continued (more than 7000 TRANSP/PTRANSP simulations in 2010) and results of PTRANSP simulations appear in conference proceedings, for example the 2010 IAEA conference, and in peer reviewed papers. PTRANSP provides a bridge to the Fusion Simulation Program (FSP) and to the future of integrated modeling. Through years of widespread usage, each of the many parts of the PTRANSP suite of codes has been thoroughly validated against experimental data and benchmarked against other codes. At the same time, architectural modernizations are improving the modularity of the PTRANSP code base. The NUBEAM neutral beam and fusion products fast ion model, the Plasma State data repository (developed originally in the SWIM SciDAC project and adapted for use in PTRANSP), and other components are already shared with the SWIM, FACETS, and CPES SciDAC FSP prototype projects. Thus, the PTRANSP code is already serving as a bridge between our present integrated modeling capability and future capability. As the Fusion Simulation Program builds toward the facility currently available in the PTRANSP suite of codes, early versions of the FSP core plasma model will need to be benchmarked against the PTRANSP simulations. This will be necessary to build user confidence in FSP, but this benchmarking can only be done if PTRANSP itself is maintained and developed.

Research Organization:
Lehigh University, Bethlehem, PA
Sponsoring Organization:
USDOE; USDOE SC Office of Fusion Energy Sciences (SC-24)
DOE Contract Number:
FG02-07ER54927
OSTI ID:
1043078
Report Number(s):
DOE/07ER54927-1; TRN: US1203264
Country of Publication:
United States
Language:
English