skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: New thin materials for electronics.

Abstract

The work described in this report is from an Early Career LDRD to develop and investigate novel thin film organic conductors with drastically improved electronic properties over the current state of the art. In collaboration with the Molecular Foundry at Lawrence Berkeley National Laboratory a Langmuir-Blodgett trough (LB) was built from scavenged parts and added to a scanning Raman microscope at LBNL. First order thin peptoid film samples were fabricated for testing Raman and photoluminescence imagining techniques. Tests showed that a single peptoid sheet can be successfully imaged using confocal Raman spectroscopy and a peptoid sheet can be successfully imaged using near-field photoluminescence at a resolution less than 70 nm. These results have helped position Sandia for advances in this area of MOF film creation. In collaboration with the Molecular Foundry at Lawrence Berkeley National Laboratory, a Langmuir-Blodgett trough (LB) was built and added to a scanning Raman microscope at LBNL. Thin peptoid film samples were fabricated for testing Raman and photoluminescence imagining techniques. Tests showed that a single peptoid sheet can be successfully imaged using confocal Raman spectroscopy, and a peptoid sheet can be successfully imaged using near-field photoluminescence at a resolution less than 70 nm. These results havemore » positioned Sandia for advance in this area of MOF film creation. The interactions with LBNL also led to award of two user projects at the Molecular Foundry at LBNL led by current Sandia staff and the appointment of a current Sandia staff to the Molecular Foundry User Executive Committee.« less

Authors:
Publication Date:
Research Org.:
Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1039011
Report Number(s):
SAND2012-1250
TRN: US201209%%298
DOE Contract Number:  
AC04-94AL85000
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; MICROSCOPES; PHOTOLUMINESCENCE; RAMAN SPECTROSCOPY; RESOLUTION; TESTING; THIN FILMS

Citation Formats

Schwartzberg, Adam. New thin materials for electronics.. United States: N. p., 2012. Web. doi:10.2172/1039011.
Schwartzberg, Adam. New thin materials for electronics.. United States. https://doi.org/10.2172/1039011
Schwartzberg, Adam. 2012. "New thin materials for electronics.". United States. https://doi.org/10.2172/1039011. https://www.osti.gov/servlets/purl/1039011.
@article{osti_1039011,
title = {New thin materials for electronics.},
author = {Schwartzberg, Adam},
abstractNote = {The work described in this report is from an Early Career LDRD to develop and investigate novel thin film organic conductors with drastically improved electronic properties over the current state of the art. In collaboration with the Molecular Foundry at Lawrence Berkeley National Laboratory a Langmuir-Blodgett trough (LB) was built from scavenged parts and added to a scanning Raman microscope at LBNL. First order thin peptoid film samples were fabricated for testing Raman and photoluminescence imagining techniques. Tests showed that a single peptoid sheet can be successfully imaged using confocal Raman spectroscopy and a peptoid sheet can be successfully imaged using near-field photoluminescence at a resolution less than 70 nm. These results have helped position Sandia for advances in this area of MOF film creation. In collaboration with the Molecular Foundry at Lawrence Berkeley National Laboratory, a Langmuir-Blodgett trough (LB) was built and added to a scanning Raman microscope at LBNL. Thin peptoid film samples were fabricated for testing Raman and photoluminescence imagining techniques. Tests showed that a single peptoid sheet can be successfully imaged using confocal Raman spectroscopy, and a peptoid sheet can be successfully imaged using near-field photoluminescence at a resolution less than 70 nm. These results have positioned Sandia for advance in this area of MOF film creation. The interactions with LBNL also led to award of two user projects at the Molecular Foundry at LBNL led by current Sandia staff and the appointment of a current Sandia staff to the Molecular Foundry User Executive Committee.},
doi = {10.2172/1039011},
url = {https://www.osti.gov/biblio/1039011}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Feb 01 00:00:00 EST 2012},
month = {Wed Feb 01 00:00:00 EST 2012}
}