skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Brief Review of Viscosity Models for Slag in Coal Gasification

Abstract

Many researchers have defined the phenomenon of 'slagging' as the deposition of ash in the radiative section of a boiler, while 'fouling' refers to the deposition of ash in the convective-pass region. Among the important parameters affecting ash deposition that need to be studied are ash chemistry, its transport, deposit growth, and strength development; removability of the ash deposit; heat transfer mechanisms; and the mode of operation for boilers. The heat transfer at the walls of a combustor depends on many parameters including ash deposition. This depends on the processes or parameters controlling the impact efficiency and the sticking efficiency. For a slagging combustor or furnace, however, the temperatures are so high that much of the coal particles are melted and the molten layer, in turn, captures more particles as it flows. The main problems with ash deposition are reduced heat transfer in the boiler and corrosion of the tubes. Common ways of dealing with these issues are soot blowing and wall blowing on a routine basis; however, unexpected or uncontrolled depositions can also complicate the situation, and there are always locations inaccessible to the use of such techniques. Studies have indicated that slag viscosity must be within a certainmore » range of temperatures for tapping and the membrane wall to be accessible, for example, between 1300 C and 1500 C, the viscosity is approximately 25 Pa {center_dot} s. As the operating temperature decreases, the slag cools and solid crystals begin to form. In such cases the slag should be regarded as a non-Newtonian suspension, consisting of liquid silicate and crystals. A better understanding of the rheological properties of the slag, such as yield stress and shear-thinning, are critical in determining the optimum operating conditions. To develop an accurate heat transfer model in any type of coal combustion or gasification process, the heat transfer and to some extent the rheological properties of ash and slag, especially in high-temperature environments need to be understood and properly modeled. The viscosity of slag and the thermal conductivity of ash deposits are among two of the most important constitutive parameters that need to be studied. The accurate formulation or representations of the (transport) properties of coal (and biomass for co-firing cases) present a special challenge of modeling efforts in computational fluid dynamics applications. In this report, we first provide a brief review of the various approaches taken by different researchers in formulating or obtaining a slag viscosity model. In general, these models are based on experiments. Since slag behaves as a non-linear fluid, we discuss the constitutive modeling of slag and the important parameters that must be studied.« less

Authors:
;
Publication Date:
Research Org.:
National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States). In-house Research
Sponsoring Org.:
USDOE Office of Fossil Energy (FE)
OSTI Identifier:
1036735
Report Number(s):
NETL-PUB-232
TRN: US201207%%11
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
01 COAL, LIGNITE, AND PEAT; BIOMASS; BOILERS; CHEMISTRY; COAL; COAL GASIFICATION; COMBUSTION; COMBUSTORS; COMPUTERIZED SIMULATION; CORROSION; DEPOSITION; FLUID MECHANICS; FOULING; GASIFICATION; HEAT TRANSFER; MEMBRANES; SILICATES; SLAGS; SOOT; THERMAL CONDUCTIVITY; VISCOSITY

Citation Formats

Massoudi, Mehrdad, and Wang, Ping. A Brief Review of Viscosity Models for Slag in Coal Gasification. United States: N. p., 2011. Web. doi:10.2172/1036735.
Massoudi, Mehrdad, & Wang, Ping. A Brief Review of Viscosity Models for Slag in Coal Gasification. United States. https://doi.org/10.2172/1036735
Massoudi, Mehrdad, and Wang, Ping. 2011. "A Brief Review of Viscosity Models for Slag in Coal Gasification". United States. https://doi.org/10.2172/1036735. https://www.osti.gov/servlets/purl/1036735.
@article{osti_1036735,
title = {A Brief Review of Viscosity Models for Slag in Coal Gasification},
author = {Massoudi, Mehrdad and Wang, Ping},
abstractNote = {Many researchers have defined the phenomenon of 'slagging' as the deposition of ash in the radiative section of a boiler, while 'fouling' refers to the deposition of ash in the convective-pass region. Among the important parameters affecting ash deposition that need to be studied are ash chemistry, its transport, deposit growth, and strength development; removability of the ash deposit; heat transfer mechanisms; and the mode of operation for boilers. The heat transfer at the walls of a combustor depends on many parameters including ash deposition. This depends on the processes or parameters controlling the impact efficiency and the sticking efficiency. For a slagging combustor or furnace, however, the temperatures are so high that much of the coal particles are melted and the molten layer, in turn, captures more particles as it flows. The main problems with ash deposition are reduced heat transfer in the boiler and corrosion of the tubes. Common ways of dealing with these issues are soot blowing and wall blowing on a routine basis; however, unexpected or uncontrolled depositions can also complicate the situation, and there are always locations inaccessible to the use of such techniques. Studies have indicated that slag viscosity must be within a certain range of temperatures for tapping and the membrane wall to be accessible, for example, between 1300 C and 1500 C, the viscosity is approximately 25 Pa {center_dot} s. As the operating temperature decreases, the slag cools and solid crystals begin to form. In such cases the slag should be regarded as a non-Newtonian suspension, consisting of liquid silicate and crystals. A better understanding of the rheological properties of the slag, such as yield stress and shear-thinning, are critical in determining the optimum operating conditions. To develop an accurate heat transfer model in any type of coal combustion or gasification process, the heat transfer and to some extent the rheological properties of ash and slag, especially in high-temperature environments need to be understood and properly modeled. The viscosity of slag and the thermal conductivity of ash deposits are among two of the most important constitutive parameters that need to be studied. The accurate formulation or representations of the (transport) properties of coal (and biomass for co-firing cases) present a special challenge of modeling efforts in computational fluid dynamics applications. In this report, we first provide a brief review of the various approaches taken by different researchers in formulating or obtaining a slag viscosity model. In general, these models are based on experiments. Since slag behaves as a non-linear fluid, we discuss the constitutive modeling of slag and the important parameters that must be studied.},
doi = {10.2172/1036735},
url = {https://www.osti.gov/biblio/1036735}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Nov 01 00:00:00 EDT 2011},
month = {Tue Nov 01 00:00:00 EDT 2011}
}