skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Role of Global Observations for Climate and Other Applications

Technical Report ·
DOI:https://doi.org/10.2172/1019543· OSTI ID:1019543

Most of the current earth-observing systems have been designed primarily for the needs of weather forecasting. Weather forecasting is an initial condition problem; the success of the forecast is heavily dependent on the quality of the specified initial state of the atmosphere. Thus, weather forecasting observing systems tend to focus on determining the 3D values of the state variables of the system – namely temperature, humidity, and wind vector. While weather forecasting requires accurate observations, spatial patterns and relative accuracy across those patterns are the primary concern. Climate, on the other hand, is a boundary condition problem, i.e., climate simulation depends on knowing the energy fluxes into and out of the system, and quantities such as CO2 that affect the flow of those energy fluxes in the system. Consequently, climate-observing systems must extend beyond measurements of state variables to flux measurements of radiation energy and water. We focus on these two cycles because the dominant forms of energy transfer in the climate system (solar energy, thermal infrared energy, evaporation, and condensation) involve these two quantities. Further, because climate is a search for small system trends and imbalances in the midst of large weather variability, climate observations require a much higher degree of precision than do weather observations.

Research Organization:
DOE Office of Science Atmospheric Radiation Measurement (ARM) Program (United States)
Sponsoring Organization:
USDOE EM Office of Science and Technology (EM-50)
DOE Contract Number:
DE-AC05-7601830
OSTI ID:
1019543
Report Number(s):
DOE/SC-ARM/TR-067; PNNL-15206; TRN: US201120%%360
Country of Publication:
United States
Language:
English