skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Novel fringe scanning/Fourier transform method of synthetic imaging

Conference ·
OSTI ID:10190793

We have developed a one-dimensional theory and a computer model for synthetically imaging scenes using a novel fringe scanning/Fourier transform technique. Our method probes a scene using two interfering beams of slightly different frequency. These beams form a moving fringe pattern which scans the scene and resonates with any spatial frequency components having the same spatial frequency as the scanning fringe pattern. A simple, non-imaging detector above the scene observes any scattered radiation from the scene falling onto it. If a resonance occurs between the scanning fringe pattern and the scene, then the scattered radiation will be modulated at the difference frequency between the two probing beams. By changing the spatial period of the fringe pattern and then measuring the amplitude and phase of the modulated radiation that is scattered from the scene, the Fourier amplitudes and phases of the different spatial frequency components making up the scene can be measured. A synthetic image of the scene being probed can be generated from this Fourier amplitude and phase data by taking the inverse Fourier transform of this information. This technique could be used to image objects using light, ultrasonic, or other electromagnetic or acoustic waves.

Research Organization:
EG and G Idaho, Inc., Idaho Falls, ID (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC07-76ID01570
OSTI ID:
10190793
Report Number(s):
EGG-M-93041; CONF-930722-43; ON: DE93018936
Resource Relation:
Conference: Annual meeting of the Society of Photo-Optical Instrumentation Engineers (SPIE),San Diego, CA (United States),11-16 Jul 1993; Other Information: PBD: [1993]
Country of Publication:
United States
Language:
English