skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Carrier Density and Compensation in Semiconductors with Multi Dopants and Multi Transition Energy Levels: The Case of Cu Impurity in CdTe: Preprint

Conference ·

Doping is one of the most important issues in semiconductor physics. The charge carrier generated by doping can profoundly change the properties of semiconductors and their performance in optoelectronic device applications, such as solar cells. Using detailed balance theory and first-principles calculated defect formation energies and transition energy levels, we derive general formulae tocalculate carrier density for semiconductors with multi dopants and multi transition energy levels. As an example, we studied CdTe doped with Cu, in which VCd, CuCd, and Cui are the dominant defects/impurities. We show that in this system, when Cu concentration increases, the doping properties of the system can change from a poor p-type, to a poorer p-type, to a better p-type, and then to a poorp-type again, in good agreement with experimental observation of CdTe-based solar cells.

Research Organization:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Solar Energy Technologies Office
DOE Contract Number:
AC36-08GO28308
OSTI ID:
1018863
Report Number(s):
NREL/CP-5200-50683; TRN: US201114%%374
Resource Relation:
Conference: Presented at the 37th IEEE Photovoltaic Specialists Conference (PVSC 37), 19-24 June 2011, Seattle, Washington
Country of Publication:
United States
Language:
English