skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Self assembly: An approach to terascale integration

Conference ·
OSTI ID:10184243

Surely one of the most remarkable accomplishments of modern times has been the miniaturization of electronic components, starting with discrete transistors and leading to Very Large Scale Integrated (VLSI) Circuits which will soon contain almost 100 million components in a few square centimeters. It led to an information processing industry that fuels almost every aspect of industrial societies and that has brought manifold benefits to their citizens. Although continuation of the miniaturization process is likely to produce even greater benefits, many experts are concerned that extrapolation of traditional silicon VLSI techniques will meet with increasingly severe difficulties. Some of these are fundamental in nature, e. g., granularity and fluctuations in semiconductors and interconnects and proximity effects such as tunneling. The first major difficulty to be encountered will be a rising cost of products due to increased complexity and difficulty of manufacturing and assembly. Such difficulties are likely to be seen in about 10 years when minimum component sizes are expected to decrease below 0.15--0.2 {mu}m. If alternatives to present VLSI techniques are to be available when needed, work on them must start now. At Los Alamos, we are exploring the feasibility of ultrasmall wires and switches that self-assemble themselves into computing elements and circuits. Their operation is based on the quantum properties of nanometer scale molecular clusters. This paper will describe our efforts in the development of these components and will summarize our work in four areas: (1) the development of conducting molecular wires, (2) conducting nanoparticle wires and switches based on the Coulomb Blockade principle, (3) the development of advanced architectures that benefit from the use of such components and that significantly advance the art of high performance computing, and (4) the development of novel methods for attaining sub-Angstrom 3-D non-destructive imaging.

Research Organization:
Los Alamos National Lab., NM (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
W-7405-ENG-36
OSTI ID:
10184243
Report Number(s):
LA-UR-93-2957; CONF-9308138-2; ON: DE93040104
Resource Relation:
Conference: 11. international invitational symposium on the unification of analytical, computational, and experimental solution methodologies,Danvers, MA (United States),18-20 Aug 1993; Other Information: PBD: [1993]
Country of Publication:
United States
Language:
English