skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Seismic source-region elastic calculations on KDYNA

Technical Report ·
DOI:https://doi.org/10.2172/10176402· OSTI ID:10176402

This paper summarizes the results of source-region simulations on the KDYNA hydrodynamics code. The source was a pressure-step function in a 40-m-radius cavity 500 m below a free surface. The problem of a driven cavity in an elastic material was chosen as a test and calibration problem for two reasons. First, the driven cavity is a model for an underground explosion. Secondly, the availability of analytical methods for waves in elastic solids means that alternate calculational paths exist for calculating the distant signals from the cavity. Data from an array of sensor points roughly 1 km from the source were saved and passed to Howard Patton and Keith K. Nakanish for input to a NMTS (Normal Mode Time Series) code. The data consisted of the time histories (0 to 2 s) of the radial and axial velocities and the radial, axial, and shear components of the stress at each sensor point. The NMTS code will use the input to predict the signals in the far field (e.g., 300 km) from the explosion source. This elastic KDYNA calculation provides a complete and satisfactory simulation for input to the NMTS code and for comparison with other calculational methods.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
10176402
Report Number(s):
UCRL-ID-116980; ON: DE94017490; TRN: 94:016702
Resource Relation:
Other Information: PBD: Mar 1994
Country of Publication:
United States
Language:
English