skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Multi-unit inertial fusion plants based on HYLIFE-II, with shared heavy-ion RIA driver and target factory, producing electricity and hydrogen fuel

Technical Report ·
DOI:https://doi.org/10.2172/10170594· OSTI ID:10170594
;  [1];  [2]
  1. Lawrence Livermore National Lab., CA (United States)
  2. Univ. of California, Davis, CA (United States)

Following is a modification of the IFEFUEL systems code, called IFEFUEL2, to treat specifically the HYLIFE-II target chamber concept. The same improved Recirculating Induction Accelerator (RIA) energy scaling model developed recently by Bieri is used in this survey of the economics of multi-unit IFE plants producing both electricity and hydrogen fuel. Reference cases will assume conventional HI-indirect target gains for a 2 mm spot, and improved HYLIFE-II BoP models as per Hoffman. Credits for improved plant availability and lower operating costs due to HYLIFE-II`s 30-yr target chamber lifetime are included, as well as unit cost reductions suggested by Delene to credit greater {open_quotes}learning curve{close_quotes} benefits for the duplicated portions of a multi-unit plant. To illustrate the potential impact of more advanced assumptions, additional {open_quotes}advanced{close_quotes} cases will consider the possible benefits of an MHD + Steam BoP, where direct MHD conversion of plasma from baseball-size LiH target blanket shells is assumed to be possible in a new (as yet undesigned) liquid Flibe-walled target chamber, together and separately, with advanced, higher-gain heavy-ion targets with Fast Ignitors. These runs may help decide the course of a possible future {open_quotes}HYLIFE-III{close_quotes} IFE study. Beam switchyard and final focusing system costs per target chamber are assumed to be consistent with single-sided illumination, for either {open_quotes}conventional{close_quotes} or {open_quotes}advanced{close_quotes} indirect target gain assumptions. Target costs are scaled according to the model by Woodworth. In all cases, the driver energy and rep rate for each chosen number of target chambers and total plant output will be optimized to minimize the cost of electricity (CoE) and the associated cost of hydrogen (CoH), using a relationship between CoE and CoH to be presented in the next section.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
10170594
Report Number(s):
UCRL-ID-117334; ON: DE94016009; TRN: 94:007572
Resource Relation:
Other Information: PBD: 5 May 1994
Country of Publication:
United States
Language:
English