skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development of Large-Area Monolithically Integrated Silicon-Film Photovoltaic Modules, Annual Subcontract Report, 1 May 1991 - 15 November 1991

Technical Report ·
DOI:https://doi.org/10.2172/10167133· OSTI ID:10167133

This report describes work to develop Silicon-Film Product III into a low-cost, stable device for large-scale terrestrial power applications. The Product III structure is a thin (< 100 {mu}m) polycrystalline silicon layer on a non-conductive supporting ceramic substrate. The presence of the substrate allows cells to be isolated and in interconnected monolithically in various series/parallel configurations. The long-term goal for the product is efficiencies over 18% on areas greater than 1200 cm{sup 2}. The high efficiency is made possible through the benefits of using polycrystalline thin silicon incorporated into a light-trapping structure with a passivated back surface. Short-term goals focused on the development of large-area ceramics, a monolithic interconnection process, and 100 cm{sup 2} solar cells. Critical elements of the monolithically integrated device were developed, and an insulating ceramic substrate was developed and tested. A monolithic interconnection process was developed that will isolate and interconnect individual cells on the ceramic surface. Production-based, low-cost process steps were used, and the process was verified using free-standing silicon wafers to achieve an open-circuit voltage (V{sub oc}) of 8.25 V over a 17-element string. The overall efficiency of the silicon-film materials was limited to 6% by impurities. Improved processing and feedstock materials are under investigation.

Research Organization:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
DOE Contract Number:
AC36-08GO28308
OSTI ID:
10167133
Report Number(s):
NREL/TP-413-4996; ON: DE92010600
Resource Relation:
Other Information: PBD: Jul 1992
Country of Publication:
United States
Language:
English