skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Helical temperature perturbations associated with tearing modes in tokamak plasmas

Technical Report ·
DOI:https://doi.org/10.2172/10165250· OSTI ID:10165250

An investigation is made into the electron temperature perturbations associated with tearing modes in tokamak plasmas, with a view to determining the mode structure using Electron Cyclotron Emission (ECE) data. It is found that there is a critical magnetic island width below which the conventional picture where the temperature is flattened inside the separatrix is invalid. This effect comes about because of the stagnation of magnetic field lines in the vicinity of the rational surface and the finite parallel thermal conductivity of the plasma. For islands whose widths lie below the critical value there is no flattening of the electron temperature inside the separatrix. Such islands have quite different ECE signatures to conventional magnetic islands. In fact the two island types could, in principle, be differentiated experimentally. It should also be possible to map out the outer ideal magnetohydrodynamical eigenfunctions using ECE data. Islands whose widths are much less than the critical value are not destabilized by the perturbed bootstrap current, unlike conventional magnetic islands. This effect is found to have a number of very interesting consequences and may, indeed, provide an explanation for some puzzling experimental results regarding error field induced magnetic reconnection. All islands whose widths are much greater than the critical width possess a boundary layer on the separatrix which enables heat to be transported from one side of the island to the other via the X-point region. The structure of this boundary layer is described in some detail. Finally, the critical island width is found to be fairly substantial in conventional tokamak plasmas, provided that the long mean free path nature of parallel heat transport and the anomalous nature of perpendicular heat transport are taken into account in the calculation.

Research Organization:
Univ. of Texas, Austin, TX (United States). Institute for Fusion Studies
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
FG05-80ET53088
OSTI ID:
10165250
Report Number(s):
DOE/ET/53088-663; ON: DE94014708; BR: 39KG01000/AT0520240; TRN: 94:013676
Resource Relation:
Other Information: PBD: Jun 1994
Country of Publication:
United States
Language:
English