skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Direct catalytic decomposition of nitric oxide. Quarterly technical progress report No. 10, January--March 1994

Technical Report ·
DOI:https://doi.org/10.2172/10154180· OSTI ID:10154180

This project investigates a suitable catalyst system for the direct nitric oxide decomposition in post-combustion gas streams. This process does not use a reductant, such as the ammonia used in the Selective Catalytic Reduction (SCR) of NO{sub x} to nitrogen. Therefore, it is a greatly simplified process basically involving passing the flue gas through a catalytic converter. Catalysts are prepared by incorporating metal cations into zeolite supports according to ion exchange procedures widely used in preparation of metal/zeolite catalysts. Particular emphasis is given in this work on promoted Cu-exchanged zeolites, especially the catalyst systems Mg/Cu-ZSM-5 and Ce/Cu-ZSM-5, which are promising for NO conversion to nitrogen at typical flue gas O{sub 2} and NO levels and over the temperature range of 673--873{degrees}C. The effect of zeolite modification, copper exchange level and catalyst preparation conditions on the catalytic activity are studied in O{sub 2}-free, O{sub 2}-rich gases, as well as wet (2--20% H{sub 2}O) gas streams in a packed-bed microreactor. Characterization of catalysts is performed by XRD, STEM, TEM and ESR. During this quarter it was found that severe steaming (20% H{sub 2}O) of Na-ZSM-5 at temperatures above 600{degrees}C caused partial vitreous glass formation and dealumination. Unpromoted Cu-ZSM-5 catalysts suffer drastic loss of NO decomposition activity in wet gas streams at 500{degrees}C. Activity is partially recovered in dry gas. Copper migration out of the zeolite channels leading to CuO formation has been identified by STEM/EDX. In Ce/Cu-ZSM-5 catalysts the wet gas activity i`s greatly improved. CuO particle formation is less extensive and the dry gas activity is largely recovered upon removal of the water vapor.

Research Organization:
Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Chemical Engineering
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
FG22-91PC91293
OSTI ID:
10154180
Report Number(s):
DOE/PC/91293-10; CONF-940301-34; ON: DE94012616; BR: AA1525050
Resource Relation:
Conference: 207. spring national meeting of the American Chemical Society (ACS),San Diego, CA (United States),13-18 Mar 1994; Other Information: PBD: [1994]
Country of Publication:
United States
Language:
English